tiagobt
- 31
- 0
Could anyone help me solve the following problem?
First, I calculated the displacement current density:
J_d = \epsilon_{Cu} \frac {dE} {dt} = - \epsilon_0 E_0 \sin(\omega t)\omega
I'm not sure if it's correct. Besides, I don't know how to find the conduction current density. I thought about using:
\vec{\nabla} \times \vec{B} = \mu_0 (\vec{J} + \epsilon_0 \vec{J_d})
But is there a magnetic field? I'm confused...
Calculate the ratio of the conduction current density to the displacement current density of the electric field E = E_0 \cos(\omega t) in copper, to a frequence of f = 1 kHz. (Given: \epsilon_{Cu} = \epsilon_0, \rho_{Cu} = 2 \times 10^{-8} \Omega m).
First, I calculated the displacement current density:
J_d = \epsilon_{Cu} \frac {dE} {dt} = - \epsilon_0 E_0 \sin(\omega t)\omega
I'm not sure if it's correct. Besides, I don't know how to find the conduction current density. I thought about using:
\vec{\nabla} \times \vec{B} = \mu_0 (\vec{J} + \epsilon_0 \vec{J_d})
But is there a magnetic field? I'm confused...
Last edited: