Hi,(adsbygoogle = window.adsbygoogle || []).push({});

Given that the flow normal to a thin disk or radius r is given by

[itex] \phi = -\frac{2rU}{\pi}\sqrt{1-\frac{x^2+y^2}{r^2}}[/itex]

where U is the speed of the flow normal to the disk, find the flow normal to an ellipse of major axis a and minor axis b.

I can only find the answer in the literature in one place, where it's stated

[itex] \phi = -\frac{U b}{E(e)} \sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}}[/itex]

where E(e) is the complete elliptical integral of the second kind and e is the eccentricity of the disk.

I have been trying to use the Joukowski map to send lines of equipotential of the disk to those of the ellipse, but I'm not sure how the complete elliptical integral of the second kind enters this picture.

Any suggestions, references, would be appreciated!

Nick

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Conformal Mapping and flow normal to ellipse

Loading...

Similar Threads - Conformal Mapping flow | Date |
---|---|

A Curve under conformal mapping | Jul 23, 2016 |

Complex Analysis: Conformal Mappings | Nov 30, 2015 |

Conformal mapping definition | Oct 14, 2015 |

Conformal mapping | Oct 8, 2014 |

Conformal Mapping | Oct 31, 2012 |

**Physics Forums - The Fusion of Science and Community**