Confused about calculating the average energy from a distribution graph

AI Thread Summary
To calculate the average energy from a distribution graph of beta particle energies, the correct approach involves using the formula E_average = SUM(E_i * p(E_i)), where p(E_i) represents the probability of each energy level based on particle counts. The confusion arises from the distinction between total counts and average energy per particle; the total value of 6,810,000 should not be divided by the number of energy regions, as this does not yield the average energy per particle. Instead, the average energy should reflect the weighted contributions of each energy level based on their probabilities. The average energy is expected to fall within the range of 40-80 keV, based on the distribution observed. Understanding this distinction clarifies the calculation process for determining average energy in liquid scintillation experiments.
ASKINGHUMAN
Messages
1
Reaction score
0
Homework Statement
How much is the average energy?
Relevant Equations
sum(E_i*p(E_i))=E_{average}
scinttt.PNG

Hello, in one of tasks of my liquid scintillation lab is to determine the average energy. You can see from the graph that data I obtained is similar to this one that I have a excel sheet data.
X-axis is for beta particle energy from 0-156keV while y-axis counts of the particles.
So according to my lab instructor, average energy is SUM_{i}^{N}(E_i*p(E_i))=E_{average). SO basically what I did following my instructor is each energy regions from 0 to 156 keV, I averaged the counting numbers and made distribution graph as above. And finally following the equation I just multiplied the averaged countings to each energy values from 0 to 156 and then summed all of them. The total value is around 6810000.
So my question is: is it really average energy? I know my question is simple and stupid and elementary school level, but still you know sometimes even simple things can be kinda confusing.
To me the average energy should be after doing all the steps above and divide the total value of 6810000 to number of energy regions like (1/N)SUM_{i}^{N}(E_i*p(E_i))=E_{average). Could you please make my confusion clear?
 

Attachments

  • image_2021-12-03_134231.png
    image_2021-12-03_134231.png
    813 bytes · Views: 130
Physics news on Phys.org
If I read you correctly, you don't deal directly with the probabilities here, but with the counts.

p(E_i) = count(E_i) / SUM[count(E_i)]
 
If that graph illustrates energies from 0 to 156keV then clearly the average will be somewhere around 40-80keV.
ASKINGHUMAN said:
Homework Statement:: How much is the average energy?
Relevant Equations:: sum(E_i*p(E_i))=E_{average}

the average energy should be after doing all the steps above and divide the total value of 6810000 to number of energy regions
You want the average energy per particle, not the average per (arbitrary) region.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top