Confusion about the entropy of mixing

Click For Summary
SUMMARY

The discussion centers on the confusion surrounding the entropy of mixing in thermodynamics and statistical mechanics. It is established that when two identical boxes containing the same ideal gas are combined, the total entropy remains unchanged if the gases are identical. However, from a statistical mechanics perspective, the entropy appears to increase significantly due to the greater number of microstates available when the partition is removed, resulting in a system with 2N1 particles in a volume of 2V1. This discrepancy highlights the importance of understanding the principles of quantum statistical mechanics to resolve such issues.

PREREQUISITES
  • Understanding of thermodynamics principles
  • Familiarity with statistical mechanics concepts
  • Knowledge of quantum theory
  • Basic grasp of the maximum-entropy principle
NEXT STEPS
  • Study the Gibbs Paradox in statistical mechanics
  • Learn about quantum statistical mechanics and its applications
  • Explore the maximum-entropy principle in thermodynamic systems
  • Investigate the Boltzmann equation and its derivation from quantum many-body theory
USEFUL FOR

Students and professionals in physics, particularly those specializing in thermodynamics, statistical mechanics, and quantum theory, will benefit from this discussion.

sha1000
Messages
123
Reaction score
6
TL;DR
I'm seeking clarity on a seeming discrepancy between thermodynamics and statistical mechanics concerning the calculation of entropy when two identical boxes are combined. While thermodynamics suggests the combined entropy remains the same, a statistical mechanics viewpoint indicates a significant increase in entropy due to the increase in potential microstates. Can anyone help resolve this?
Hello everyone,

I am seeking some clarification regarding a question related to thermodynamics and statistical mechanics. My understanding is that when we combine two identical boxes with the same ideal gas by removing the wall between them, the resulting system's entropy stays the same. Essentially, the total entropy of the new system is the summation of the entropies of the original two boxes (i.e., Stot = S1 + S2 = 2S1 or 2S2).

However, from the standpoint of statistical mechanics, it appears that this entropy increase might not be as straightforward. Let's consider that we have N1 particles in a volume V1, which results in an entropy of S1. If we duplicate this system with a partition in place, we can simply double the entropy. But, if we remove the partition, we're left with 2N1 particles in a volume of 2V1. My confusion arises from the fact that when calculating the number of microstates in this new system, the entropy seems to increase significantly due to the doubled number of particles in the doubled volume.

Could anyone shed some light on this apparent discrepancy between these two views?

Thank you in advance for your help!
 
Science news on Phys.org
sha1000 said:
TL;DR Summary: I'm seeking clarity on a seeming discrepancy between thermodynamics and statistical mechanics concerning the calculation of entropy when two identical boxes are combined. While thermodynamics suggests the combined entropy remains the same, a statistical mechanics viewpoint indicates a significant increase in entropy due to the increase in potential microstates. Can anyone help resolve this?

Hello everyone,

I am seeking some clarification regarding a question related to thermodynamics and statistical mechanics. My understanding is that when we combine two identical boxes with the same ideal gas by removing the wall between them, the resulting system's entropy stays the same. Essentially, the total entropy of the new system is the summation of the entropies of the original two boxes (i.e., Stot = S1 + S2 = 2S1 or 2S2).

However, from the standpoint of statistical mechanics, it appears that this entropy increase might not be as straightforward. Let's consider that we have N1 particles in a volume V1, which results in an entropy of S1. If we duplicate this system with a partition in place, we can simply double the entropy. But, if we remove the partition, we're left with 2N1 particles in a volume of 2V1. My confusion arises from the fact that when calculating the number of microstates in this new system, the entropy seems to increase significantly due to the doubled number of particles in the doubled volume.

Could anyone shed some light on this apparent discrepancy between these two views?

Thank you in advance for your help!
If the gases in the two parts of the box are of identical particles (atoms/molecules), then the entropy doesn't change. If they are not identical there's mixing entropy. You get this right within statistical mechanics, using quantum theory. Anyway, quantum statistical mechanics is simpler than classical. If you know enough quantum theory, it's thus easier to learn statistical physics starting from quantum many-body theory and, for equilibrium, the maximum-entropy principle and take the classical limit to get the results of classical statistics. The same also holds for off-equilibrium statistical mechanics, where you can derive the Boltzmann(-Uehling-Uhlenbeck) equation via the Kadanoff-Baym equations of quantum many-body theory.
 
  • Like
Likes   Reactions: Lord Jestocost

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 39 ·
2
Replies
39
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K