An insulated container (constant volume, adiabatic) contains an Ideal gas with pressure P1 and temperature T1.
We open the container's hatch for a few seconds and let some particles escape from the container, then we close the hatch again. We know container's pressure has reduced by exiting...
Hey there, I honestly donโt know if this is the right place for this, but I figured I would ask.
lets say you are going to take a bath, but someone just took a shower and you know your hot water heater will be running low on the goods.
Just for arguments sake, letโs say you have just enough...
In the thermodynamics textbook there is written: ๐ฟ๐ด = ๐๐๐ โ ๐๐ = ๐(๐๐) โ ๐๐๐ โ ๐๐ = โ๐(๐ โ ๐๐) โ ๐๐๐ = โ๐๐น โ ๐๐๐
How did we get the bolded area from TdS? Is that property of derivative, integral, or something else :/
As it is clear from the formula for r.m.s speed ,it is only dependent of temperture for a particular gas,I think the answer should be "No change happens".But I wonder whether there is more insight to this.And is my assumption true?
This is a cyclic transformation. Is it safe to say thay it's irreversible because if you reverse it, it means I could extract an amount of heat from a cold reservoir and move it into a hotter reservoir with no other effect?
In defining the heat capacity of a subatance as the constant relating change in temperature to change in heat, is it assumed that the system does no work? Does it really say (heat capacity is the constant relating heat change to temperature change when the system does no work)?
For a freely expanding ideal gas(irreversible transformation), the change in entropy is the same as in a reversible transformation with the same initial and final states. I don't quite understand why this is true, since Clausius' theorm only has this corrolary when the two transformations are...
A cylinder contains a powder made up two substances - spherical grains of metal and spherical grains of plastic. In between the grains are voids, so that the cylinder is made up of 75% powder grains and 25% air. The cylinder is oriented vertically. It is sealed at the bottom and open at the top...
I'm looking to create a little webapp where the user can see the 3-D PVT phase diagram, giving the user functionality like orbiting the surface and moving a point along the surface. (I attached an image of the surface I'm referring to). To do that, though, I would need the data defining the PVT...
Hello,
I have the following problem and hope you can help me. I have the setup as shown in the drawing. A pipe that is flowed through, and in the middle of it another pipe, but at the end of this branch is a sensor. Initially the fluid would flow, with a temperature of 25ยฐC. If my thought is...
Hello , we learned in thermodynamics that to calculate ฮHr ยฐ(of the reaction ) using ฮHf ยฐ(standard heat of formation ), we have to respect that
ฮHf ยฐ=ฮHr ยฐ of a reaction forming 1 mol of compound from pure elements in their most stable form at standard state .
the problem is when we want to...
I found there is kind of solution in Pointon's book: An Introduction to Statistical Physics for Students. But I don't know how to find intensity by using frequency.
By chance, I have read a paper that left me in shambles. I would like you to help me figure out if it makes sense or not. I tried to follow Bridgman's logic, without a complete success. The extraordinary claim is that, if you start with a system consisting of a 1cm^3 copper cube where 2 faces...
Hi,
I have to found the number of microstates for a gas of N spheres of radius r and volume v in box taking into account the reduced volume after each sphere. V sphere << V box.
I'm struggling to find the microstates in general.
I don't see how to find the number of microstates without knowing...
My work
Q= 0.025 * 4190 * (34-100) = -6910
but on chegg but did they do
Q= 0.025 * 4190 * (100-34) = 6910. I thought the initial is 100C and final is 34 because it goes from 100 to 34
My thought process of how i do the ice melting part: (note I just ignore the copper/lead part cause I already know how to do that part)
Q_ice + Q_melt + Q_liquid so, it 0.018(2100)T+0.16(4190)T+0.018(334*10^3)
but on chegg they didn't use 2100 but they just use 4190 instead and I am confused...
Hello, I am working on a project that involves air at high pressure and temperature flowing through an orifice (valve) from one container to another. For each container, the volume, temperatures and pressures are known. The valve diameter is also known, and the fluid is air (which can be...
Hi,
starting for this thread Question about entropy change in a reservoir consider the spontaneous irreversible process of heat transfer from a source ##A## at temperature ##T_h## to another source ##B## at temperature ##T_c## (##T_h > T_c##). The thermodynamic 'system' is defined from sources...
Through an intriguing fictitious dialog between Sadi Carnot and Robert Sterling, Prof. Israel Urieli of the Ohio University shows that it is not required to invoke entropy, the second law of thermodynamics, and the Carnot cycle with the [ideal] adiabatic processes in order to find out the...
In chemical reactions generally ฮG < 0 , but if we were to consider a reversible path between pure reactants and products at 1 bar pressure , shouldn't the ฮG = 0 for every reaction ? and if it is due to non-pv work , I don't see any non pv work being done in reactions happing in a closed...
Hello Physics Forums,
I have been struggling with this question for some time now and I'm not sure my method is correct - please see attached.
Any help you can give to check I'm on the right lines would be very much appreciated!
Cheers, C
Hello, just wanted to ask regarding the otto cycle; if we were to find the entropy at the phase of isentropic compression and I was already able to derive the temperature 1 and 2 and the pressures at 1 and 2 and I also have the compression ratio of 10. How do I derive the entropy (s1 and s2)...
Hey guys! This is problem from Callens Thermodynamics textbook and I'm stuck with it.
My goal was to get a expression for the entropy ##S## which is dependent on ##T## so I can move into the ##T-S##-plane to do my calculations:
I startet by expressing the fundamental equation as a function of...
Summary:: Gibbs and Helmholtz energies calculations for heating an ideal gas at constant volume
I am solving a problem involving an ideal gas that undergoes several chained changes of state. One of the steps asks to calculate the change in Gibbs Energy (DeltaG) and Helmholtz energy (Delta A)...
Basically this would be a closed loop geothermal system for electrical power generation. The system would consist of 2 Horizontal Wells connected creating a U-shaped closed loop cycle using thermosiphon effect, with constant recirculation. It's not really a conventional geothermal power...
Hi all,
For an Isothermal compression process of air in a vessel with constant volume, I found the following expressions
and
and
The first two give the same result, meanwhile the third gives another solution and I don't know why.
For adiabatic compression I found these two expression which...
Hello everyone!
I have a course in thermodynamics this year, and there is a question about enthalpy that I cannot answer: given the definition of enthalpy H=U+PV and the integral form of the internal energy U=TS-PV we conclude that H=TS.
We normally say that enthalpy equals the heat exchanged in...
Hey guys,
During my work I have to show on a P-V diagram certain points on the spinodal for water.
How do I draw the spinodel and isothermal lines on a diagram (for example in Excel)? Is it something that I need to calculate? I'm lost on this, I did not find anything relevant on the internet...
In addition to the homework statement and considering only the case where ##U= constant## and ##N = large## : Can we also consider the definition of chemical potential ##\mu## and temperature ##T## as in equations ##(1)## and ##(2)##, and use them in the grand partition function?
More...
there's a website to size an aquarium heater or chiller.
This is just for learning purposes (not for fish) but I have modified these parameters from default to perform a load calculation on a 100 gallon glass tank... For the tank temperature range I set to be between 150-160 degree F. and a...
If a substance gains energy, it's molecules vibrate faster and thus the material increases temperature. My question is if heat lost through any other means but radiation is zero, how exactly does these molecules radiate photons?
For the heat engine:
First I converted all the temperatures to Kelvin,
ฮทmax=1-(333)/(1000)=0.667
ฮทclaim=(1*10^3)/(1.75*10^3)=0.5714
So the heat engine seems to be less efficient than a Carnot heat engine which means it can exist.
For the refrigerator:
COPmax=(253)/(363-253)=2.3...
In Thermodynamics, I have seen that some equations are expressed in terms of inexact differentials, ##\delta##, instead of ##d##. I understand that this concept is introduced to point out that these differential forms are path-dependent, although I am not clear how they can be handled.
So, are...
I know i have to use the efficiency formula and everything is fine but i don't know how to find T its the only unknown in my equation can someone please tell me how to find T . In the solution they got the value of T by equating the work done by the two engines , but why is their work done equal ?
I have a copper cylinder that is at 0C, how much time will be needed for it to equilibrate with 10kg of water at 75C?
Copper cylinder:
Mass: 105.7 g
Specific heat: 0.385 J/gC
Initial Temp: 0C
Final Temp: 75C ish
SA: 25 cm^2
Water:
Mass: 10000g
Specific heat: 4.184 J/gC
Initial Temp: 75C...
When measuring pressure drop across a compressed air system shown in the included figure, I get different results depending on the system downstream of the actual component I am measuring pressure drop across. Btw this is a real experiment that has been ran. The numbers below are different but a...
This question is inspired by a comment that @thephystudent made where he said that
"The dephasing between the Bragg pulses is not unitary, I believe it can be explicitly written in Lindblad form and generates heat. I believe this Point of view is the same as (among others) the papers of...
I am self studying thermodynamics and I stumbled upon the concept of a quasi-equilibrium process which I don't fully understand but here are my thoughts, Equilibrium is a condition of balance characterized by the absence of driving potentials and at such conditions you can measure properties...
The question says that the process is melting, so temperature must increase.
Hence, Delta T > 0.
Also, it is given that the slope for its fusion curve is -ve, which means that as we increase temperature, the pressure will decrease.
So, Delta P < 0.
The question asks to prove that the substance...
Using (2) on (1) give ## dU = -dW##... (4)
A.For expansion since the gas goes from ##(P_1, V_1, T_1)## to ##(P_2, V_2, T_2)##, does this imply ##T_1 \leq T_2 ##?
B. If so, then ##W## for adiabatic expansion would be negative (using (3))? Using negative ##dW## in (4) gives us a positive result...
If I had an object in an orbit around the Earth that I kept continually shaded from the sun, how cold would it get?
Assuming the shade device was not physically connected to and was sufficiently far away from the object to not radiate any heat to it.
And if I actively adjusted how much shade...
What does it actually mean from an intuitive standpoint? I donโt want to simply memorize the equation. What is it really and when can it be used? What is the usefulness of it?
Thanks.
Homework Statement
I am having an issue trying to decipher this question, as I am not sure if it a lack of knowledge on my half or there is an assumption I have to make.
Homework Equations
##\epsilon=\frac{W_{total}}{Q_{in}}##
The Attempt at a Solution
My issue is calculating the heat...
I have an interest in storing, for later use, energy from excess shaft power developed by a wind turbine. Currently I am assuming that the compressor is running in a steady fashion, continually drawing 300K, 1.0 atm. air into the compression chamber and compressing it to 20 atms. before...
Given that absolute zero is the lowest temperature possible, were all particles have zero vibration. And given that the speed of light is the highest speed any object, particle, sub atomic or not can travel. Using 2 of the most fundamental laws of physics thermodynamics and general relativity...
i don't really understand why S of the universe must be always positive,i know that only reversible process have constant entropy but why real proceses always increase S in the universe?
sorry for bad english I am not from USA or UK