Classical Confusion between Electrodynamics texts

AI Thread Summary
Sadiku's "Principles of Electromagnetics" is considered an intermediate text suitable for electrical engineering students and can prepare readers for more advanced materials like Zangwill, although it may not cover all the details found in Griffiths' texts. The discussion highlights the differences in conventions between engineering and physics texts, particularly regarding Fourier transforms and vector calculus, which can complicate learning. While Sadiku does not delve deeply into topics like antennas and waveguides, exposure to these subjects is deemed beneficial. For further study after Sadiku, Griffiths is recommended for its clarity, while advanced texts like Landau and Lifshitz or Lechner are suggested for those seeking a modern approach. Overall, mastering the conventions and mathematical tools is crucial for success in electrodynamics and related fields.
Mr.Husky
Gold Member
Messages
89
Reaction score
28
Hello everyone,

I recently completed kleppner and kolenkow classical mechanics book. Next I am going to learn Electrodynamics. My brother is a EE major and he gave me his copy of "principles of electromagnetics" Matthew Sadiku 4th edition. But a lot of people here recommend Griffiths. So,

1.) Can I use Sadiku as a substitute for Griffiths?
2.) Does Sadiku book prepare me for more advanced em books like zangwill ?

Thank you in advance!
Edit:- I know calculus 1,2 and linear algebra . Will be going to study ODE.
 
Last edited:
Physics news on Phys.org
K&K is one of the more advanced beginner texts.
Sadiku is an intermediate text for EE. It should be able to prepare you for Zangwill. It will use vector calculus, so it might be too difficult for you.
 
  • Like
Likes Mr.Husky and vanhees71
caz said:
K&K is one of the more advanced beginner texts.
Sadiku is an intermediate text for EE. It should be able to prepare you for Zangwill. It will use vector calculus, so it might be too difficult for you.
Thank you caz for reply!
Yes vector analysis is difficult but I have enough time to learn it. One more thing, should I have to go through the chapters on antennas, transmission lines, waveguides?
 
Well, usually EE texts on electromagnetic field theory are pretty good, but one caveat is that they sometimes have a different convention, particularly with regard to the Fourier transform. They often have the opposite sign in the time Fourier integral than physicists, i.e., they usually make the ansatz with ##\exp(+\mathrm{i} \omega t)## instead of ##\exp(-\mathrm{i} \omega t)## when describing harmonic time dependence. That usually drives me nuts when reading an EE text (of course they also use ##\mathrm{j}## instead of ##\mathrm{i}## for the imaginary unit, but that's a minor nuissance).
 
  • Like
Likes sysprog, Delta2, PhDeezNutz and 2 others
Ganesh Mammu said:
Thank you caz for reply!
Yes vector analysis is difficult but I have enough time to learn it. One more thing, should I have to go through the chapters on antennas, transmission lines, waveguides?
Yes. Either you will need them in your future or it will be good for you to have been exposed to them once. As a requirement for Zangwill, the answer is no.
 
  • Like
Likes Mr.Husky and vanhees71
vanhees71 said:
Well, usually EE texts on electromagnetic field theory are pretty good, but one caveat is that they sometimes have a different convention, particularly with regard to the Fourier transform. They often have the opposite sign in the time Fourier integral than physicists, i.e., they usually make the ansatz with ##\exp(+\mathrm{i} \omega t)## instead of ##\exp(-\mathrm{i} \omega t)## when describing harmonic time dependence. That usually drives me nuts when reading an EE text (of course they also use ##\mathrm{j}## instead of ##\mathrm{i}## for the imaginary unit, but that's a minor nuissance).
Oh I got it vanhees71.
Does it creat any harm when studying quantum mechanics?
 
  • Like
Likes vanhees71
caz said:
Yes. Either you will need them in your future or it will be good for you to have been exposed to them once. As a requirement for Zangwill, the answer is no.
Thank you caz.
 
  • Like
Likes Frabjous
Ganesh Mammu said:
Oh I got it vanhees71.
Does it creat any harm when studying quantum mechanics?
No. If you cannot handle a different convention, you have other problems.
 
  • Like
Likes Mr.Husky
I don't think it creates any harm, but I think it's already hard enough to start electrodynamics. For me it was the most difficult subject in the early curriculum at university. In Germany it's taught in the experimental-physics course in the 2nd and in the theory course the 3rd semester. In my opinion that's too early, because of all the math one needs: It starts with vector calculus. Then you also need some of the math of partial differential equations (Laplace and Poisson equations for electrostatics; then of course the wave equation for electrodynamics) and the related ways to solve the corresponding boundary/initial value problems. Among them you need Fourier transformations and series (including generalized ones like the spherical and solid harmonics when it comes to the multipole expansion). For that latter subject the treatment of waveguides and cavities are great, because they provide some intuition for why these orthogonal systems of functions occur.

So it's good to first stick to one convention not to have to struggle with one more unnecessary complication. If you get used to the subject, it's not that difficult anymore to switch from one convention to another.
 
  • Like
Likes sysprog, PeroK, Mr.Husky and 1 other person
  • #10
caz said:
No. If you cannot handle a different convention, you have other problems.
A small question caz:-
Actually Sadiku doesn't contain all the details which are present in Griffiths (as it is a EE book) and also it doesn't mention the word Fourier in it's index. But Sadiku spends more time explaining PDE's vanhees71 mentioned which I think it is good for me. So after Sadiku which EM book should I consult as it deals only with electrostatics.
Thank you vanhees71 for your reply!
 
  • #12
I would stay away from Zangwill. His book is called "Modern Electrodynamics", however he used the ##x_4 = ict## which is anything but modern. I would suggest D.J. Griffiths' text, even though he uses the ##-+++## metric.
 
  • Haha
  • Like
Likes Demystifier and Mr.Husky
  • #14
dextercioby said:
I would stay away from Zangwill. His book is called "Modern Electrodynamics", however he used the ##x_4 = ict## which is anything but modern. I would suggest D.J. Griffiths' text, even though he uses the ##-+++## metric.
Thanks Dextercioby. I am now looking for a book some advanced than Griffiths but still explaining things clearly.
 
  • #15
Another question here :-
Can anyone explain more about the notation used in special relativity.
 
  • #16
Ganesh Mammu said:
A small question caz:-
Actually Sadiku doesn't contain all the details which are present in Griffiths (as it is a EE book) and also it doesn't mention the word Fourier in it's index. But Sadiku spends more time explaining PDE's vanhees71 mentioned which I think it is good for me. So after Sadiku which EM book should I consult as it deals only with electrostatics.
Thank you vanhees71 for your reply!
Like I said earlier, Sadiku is an EE text. Zangwill is physics. So they emphasize different things. What advanced book you use depends on the direction you are heading; i.e., do not worry about it now.
 
  • Like
Likes Mr.Husky
  • #17
caz said:
Like I said earlier, Sadiku is an EE text. Zangwill is physics. So they emphasize different things. What advanced book you use depends on the direction you are heading; i.e., do not worry about it now.
Ok caz. I think it is waste of time now thinking what to study in future. Rather I am now interested in knowing more about special relativity. So can you answer my previous question in #15?
 
  • Like
Likes bob012345
  • #18
The sign convention deals with how you do inner products for 4-vectors in relativity. In modern approaches, the time portion has a different sign than the spatial part so you can have -+++ or +---. An older approach uses i which allows you to define the inner product ”normally” because i2 changes the sign. The modern approach is preferable and eventually becomes required in general relativity. People get really worked up over the topic. Personally, it does not bother me in EM texts.
 
Last edited:
  • Like
Likes bob012345 and Mr.Husky
  • #19
caz said:
The sign convention deals with how you do inner products for 4 vectors in relativity. In modern approaches, the time portion has a different sign than the spatial part so you can have
-+++ or +—-. An older approach, uses i which allows you to define the inner product
”normally” because i2 changes the sign. The modern approach is preferable and eventually becomes required in general relativity. People get really worked up over the topic. Personally, it does not bother me in EM texts.
I think it takes time to understand this stuff. Thank you caz for replying!
 
  • Like
Likes Frabjous
  • #20
dextercioby said:
I would stay away from Zangwill. His book is called "Modern Electrodynamics", however he used the ##x_4 = ict## which is anything but modern. I would suggest D.J. Griffiths' text, even though he uses the ##-+++## metric.
Well, one has to get used to the mess with the signature in relativity anyway. The HEP people usually use the west-coast convention ##\eta_{\mu \nu}=\mathrm{diag}(1,-1,-1,-1)## (though not all as e.g., Weinberg) and the GR people mostly use the east-coast convention ##\eta_{\mu \nu}=\mathrm{diag}(-1,1,1,1)## (though not all like e.g. the newer editions of Landau and Lifshitz and Adler). That's all fine, but the use of the old ##\mathrm{i} c t## convention is a sin. If only Sommerfeld wouldn't have done this, I'd say don't read any book using it, but Sommerfeld is so good (imho the best theory books on classical physics ever written)... His vol. 3 is also a very good intro to electricity and magnetism, while the (also highly recommended) treatment of vector calculus is in vol. 2 on hydrodynamics.

I don't know, what's modern on Zangwill's book. It's as old-fashioned as Jackson and his is very comprehensive and much better than Zangwill (at least the 2nd edition where he sticks consistently with Gaussian units, which are the 2nd-best choice for theoretical electrodynamics; the best being Heaviside-Lorentz units). A truly modern approach and still accessible for beginning graduate students is Landau and Lifshitz vol. 2. Another even more modern book is Lechner, making also use of modern theory of generalized functions/distributions, solving many of the age-old troubles with point charges (even massless ones), as far as this unphysical classical point-particle model makes sense at all (it doesn't really of course, but Lechner pushes it as far as one can, at least to my knowledge).

I'd, however, not bother with these advanced books for beginning. I like the book by Griffiths very much, including a very nice approach to what's infamously dubbed "hidden momentum" (although it's just relativistic momentum). Another somewhat older very good book is Abraham and Becker (available in a nice Dover edition). Particularly, it has a very good introductory chapter on vector calculus (of about 40 pages).
A more accessible "relativity first approach" is by Schwartz. Stay away from Berkeley physics course vol. 2 (Purcell) which at least I found confusing when I first studied the subject. We also liked the volume on electrodynamics in the theory series by Greiner. Last but not least another gem is of course vol. 2 of the Feynman lectures.
 
  • Like
Likes sysprog and Mr.Husky
  • #21
vanhees71 said:
Well, one has to get used to the mess with the signature in relativity anyway. The HEP people usually use the west-coast convention ##\eta_{\mu \nu}=\mathrm{diag}(1,-1,-1,-1)## (though not all as e.g., Weinberg) and the GR people mostly use the east-coast convention ##\eta_{\mu \nu}=\mathrm{diag}(-1,1,1,1)## (though not all like e.g. the newer editions of Landau and Lifshitz and Adler). That's all fine, but the use of the old ##\mathrm{i} c t## convention is a sin. If only Sommerfeld wouldn't have done this, I'd say don't read any book using it, but Sommerfeld is so good (imho the best theory books on classical physics ever written)... His vol. 3 is also a very good intro to electricity and magnetism, while the (also highly recommended) treatment of vector calculus is in vol. 2 on hydrodynamics.

I don't know, what's modern on Zangwill's book. It's as old-fashioned as Jackson and his is very comprehensive and much better than Zangwill (at least the 2nd edition where he sticks consistently with Gaussian units, which are the 2nd-best choice for theoretical electrodynamics; the best being Heaviside-Lorentz units). A truly modern approach and still accessible for beginning graduate students is Landau and Lifshitz vol. 2. Another even more modern book is Lechner, making also use of modern theory of generalized functions/distributions, solving many of the age-old troubles with point charges (even massless ones), as far as this unphysical classical point-particle model makes sense at all (it doesn't really of course, but Lechner pushes it as far as one can, at least to my knowledge).

I'd, however, not bother with these advanced books for beginning. I like the book by Griffiths very much, including a very nice approach to what's infamously dubbed "hidden momentum" (although it's just relativistic momentum). Another somewhat older very good book is Abraham and Becker (available in a nice Dover edition). Particularly, it has a very good introductory chapter on vector calculus (of about 40 pages).
A more accessible "relativity first approach" is by Schwartz. Stay away from Berkeley physics course vol. 2 (Purcell) which at least I found confusing when I first studied the subject. We also liked the volume on electrodynamics in the theory series by Greiner. Last but not least another gem is of course vol. 2 of the Feynman lectures.
Thanks for your recommendations vanhees71!
Is it bad to supplement Griffiths with Sadiku??
And can Griffiths prepare me for Lechner because its contents look more promising than Zangwill.
 
  • #22
Ganesh Mammu said:
Thanks for your recommendations vanhees71!
Is it bad to supplement Griffiths with Sadiku??
And can Griffiths prepare me for Lechner because its contents look more promising than Zangwill.
After looking at couple of pages of Lechner's book, Does mathematical methods at the level of boas prepare me to tackle it?
 
  • #23
Ganesh Mammu said:
Thanks for your recommendations vanhees71!
Is it bad to supplement Griffiths with Sadiku??
And can Griffiths prepare me for Lechner because its contents look more promising than Zangwill.
I don't know Sadiku. So it's hard to say.

It's anyway wise to first check several books in the library, which you get along with best. I'd not recommend Lechner to start learning E&M. It's too much advanced. I think Boas ( Mathematical Methods in the Physical Sciences) is a good math for physicists book. Particularly the chapter on vector analysis should be very helpful to work through before starting electromagnetism.
 
  • Like
Likes Mr.Husky
  • #24
vanhees71 said:
I don't know Sadiku. So it's hard to say.

It's anyway wise to first check several books in the library, which you get along with best. I'd not recommend Lechner to start learning E&M. It's too much advanced. I think Boas ( Mathematical Methods in the Physical Sciences) is a good math for physicists book. Particularly the chapter on vector analysis should be very helpful to work through before starting electromagnetism.
Now I got it. After I complete Griffiths and Boas then I will move to Lechner. Thank you vanhees71 for your reply!
 
  • #25
Thanks all for your replies. I will be studying Griffiths from now. No more questions.
 
  • #26
@vanhees71
I can see why you like Lechner, but do you really think that it would be a good FIRST graduate EM text?
 
  • Like
Likes Mr.Husky
  • #27
I guess one should first have a more physics centered text. The radiation-reaction problem is not that important after all. At the end it boils down to the result that one needs quantum theory to describe matter anyway. On the other hand, the relativity-first approach should be good as a first graduate text. For this I'd recommend Landau Lifshitz vol. 2 and then of course also vol. 8.
 
  • Like
Likes Mr.Husky
  • #28
vanhees71 said:
... That's all fine, but the use of the old ##\mathrm{i} c t## convention is a sin.
There are many sins in the world today but using the old ##\mathrm{i} c t## convention is not on my list. :smile:
vanhees71 said:
Stay away from Berkeley physics course vol. 2 (Purcell) which at least I found confusing when I first studied the subject.
I disagree. Purcell is a fine book written by a Nobel prize winner.
 
  • Skeptical
Likes Mr.Husky and weirdoguy
  • #29
Well, I don't say you shoud throw away old textbooks using the ##\mathrm{i} c t## convention. For me the best general theory textbook (series) ever written are the 6 volumes by Sommerfeld (Lectures on theoretical physics), where this convention is used too. I'd only never recommend to learn special relativity from a textbook using it, because it's utmost confusing. If you are used to the relativistic four-vector formalism it doesn't do much harm anymore.

Only because a textbook is written by a Nobel laureate it's not a guarantee for being a good textbook. I find Purcell's E&M utmost confusing. As a much better book, also written by a Nobel laureate and with the same good intention for providing a "relativity first" approach, I'd recommend rather M. Schwartz, Principles of Electrodynamics, Dover Pub. (1972).

It's of course only my personal opinion and reflects my personal experience when trying to learn from Purcell's textbook. For me the revelation about E&M were the Feynman Lect. vol. 2 and after a while A. Sommerfeld, Lects. on Theoretical Physics, vol. 3. It may well be that other students find Purcell's book helpful.
 
  • Like
Likes hutchphd, Mr.Husky, Demystifier and 1 other person
  • #30
vanhees71 said:
Well, I don't say you should throw away old textbooks using the ##\mathrm{i} c t## convention.
I'm glad. Reading an old book is like shopping in a supermarket where you know where everything is.
vanhees71 said:
Only because a textbook is written by a Nobel laureate it's not a guarantee for being a good textbook. I find Purcell's E&M utmost confusing. As a much better book, also written by a Nobel laureate and with the same good intention for providing a "relativity first" approach, I'd recommend rather M. Schwartz, Principles of Electrodynamics, Dover Pub. (1972).
I'll check it out. Thanks.
 
  • Haha
Likes hutchphd, Mr.Husky and vanhees71
  • #31
Mr.Husky said:
Thank you caz for reply!
Yes vector analysis is difficult but I have enough time to learn it. One more thing, should I have to go through the chapters on antennas, transmission lines, waveguides?
Vector analysis cannot be put off. It is required if you want to understand electromagnetism.
The problem is that most texts treat them as separate subjects.
You could try "Classical Electromagnetism" by Franklin which coordinates Vector Analysis with the electromagnetism. It is more advanced than Griffiths, but the first three chapters, which introduce vector anaylsis, are fairly simple.
 
  • #32
Sure, it's nonsense to think you could learn physics without using the only adequate language to discuss it, and that's almost all in terms of analytical/differential geometry.

You get quite a long way with Euclidean vector calculus. In classical mechanics and (in the non-covariant "1+3 formalism" of relativity) electrodynamics you only rarely need 2nd-rank tensors (in point-particle mechanics the tensor of inertia for rigid bodies, in continuum mechanics and electrodynamics the stress/Maxwell stress tensor and, if you cover crystal optics, the dielectric tensor).

For the fully covariant relativistic electrodynamics, which has great advantages concerning consistency and in some sense even implification from a more advanced point of view, you need tensor analysis for the pseudo-Euclidean affine Minkowski manifold. That's not too difficult to learn with some experience in the Euclidean vector calculus formalism.

I'm not so sure, whether it makes sense to use more advanced and modern techniques like the Cartan calculus of differential forms or the coordinate- and frame-independent formulations although they have some calculational advantages compared to the more traditional style using the Ricci calculus, which sometimes tends to be quite an "index battle". I'd think that's not so necessary for the introductory undergraduate topics than rather for advanced topics in General Relativity.

What also seems to be underrepresented in the traditional curriculum is (Lie-)group theory. If there is one unifying concept of all physics it's symmetry principles and thus the extended view on geometry (in the wider sense) introduced by Klein's Erlanger program somewhat earlier than it became the utmost important theoretical tool of modern physics in the 20th century. I think at least some glances on these topics already in the earlier theory lectures (e.g., Poisson brackets and their Lie-algebra structure in the analytica-mechanics lecture) can help greatly to understand the necessarily more abstract quantum mechanics and (relativistic) quantum field theory.
 
  • Like
Likes sysprog and Mr.Husky
  • #33
I found electrodynamics to be the hardest topic in my undergraduate curriculum.
In my second course on undergraduate intermediate electrodynamics (time-dependent stuff) my professor gave us copies of Sadiku, and I hated it. Probably a bias against EE texts.
Griffiths is good enough for most topics, but if I remember correctly, the treatment of the Lieanrd-Wierchert potentials is utterly confusing. In that regard I was pleasantly surprised by Vanderlinde's book.

By the way, talking about older books (that I have not read), what about Panofsky and Phillips? seems quite interesting.
 
  • Like
Likes Mr.Husky and vanhees71
  • #34
We are talking about a first book in electromagnetism. You know, what's taught to freshmen and sophomores. Not upper division, and certainly not graduate level.
 
  • #35
Well, my first course ever on electromagnetism used Alonso & Finn and Feynman lectures. Nowadays I would complement them with "Student's Guide to Maxwell's Equations" by Fleisch.

But it is weird since Griffiths was mentioned. Do people really use and recommend Griffiths for a first book ever on electromagnetism?
 
  • #36
Oh for the love of God, can we please stop recommending upper division and graduate books to beginner students on this forum? Griffiths, Schwarz, Franklin, etc. are not suitable for someone who just finished K&K.

OP, just start with Electricity & Magnetism by Purcell supplemented by A Student's Guide to Maxwell's Equations by Fleisch. If you don't like Purcell, then maybe try Fundamentals of Electricity and Magnetism by Arthur Kip.
 
  • Like
  • Skeptical
Likes Mr.Husky, Dr.D, Vanadium 50 and 2 others
  • #37
andresB said:
I found electrodynamics to be the hardest topic in my undergraduate curriculum.
In my second course on undergraduate intermediate electrodynamics (time-dependent stuff) my professor gave us copies of Sadiku, and I hated it. Probably a bias against EE texts.
Griffiths is good enough for most topics, but if I remember correctly, the treatment of the Lieanrd-Wierchert potentials is utterly confusing. In that regard I was pleasantly surprised by Vanderlinde's book.

By the way, talking about older books (that I have not read), what about Panofsky and Phillips? seems quite interesting.
I find the Lienard-Wiechert potentials really loose their intimitating nature when treating them relativistically. Here's my try to explain them (Sect. 4.5):

https://itp.uni-frankfurt.de/~hees/pf-faq/srt.pdf
 
  • Informative
Likes andresB
  • #38
Amrator said:
Oh for the love of God, can we please stop recommending upper division and graduate books to beginner students on this forum? Griffiths, Schwarz, Franklin, etc. are not suitable for someone who just finished K&K.

OP, just start with Electricity & Magnetism by Purcell supplemented by A Student's Guide to Maxwell's Equations by Fleisch. If you don't like Purcell, then maybe try Fundamentals of Electricity and Magnetism by Arthur Kip.
You are right about that. We're talking of at least two levels of education:
- beginner in college/university level electromagnetism.
- intermediate/advanced level electromagnetism.

Beginner level > focuses on Maxwell's equations in vacuum and matter, electrostatics, magnetostatics, all treated with vector calculus and multivariable real calculus.
Medium/advanced > defines "electrodynamics", uses special relativity (including Minkowski spacetime notation) and all derivations from it.

People here always focus on the second part and provide recommendations for at least intermediate-level education.
 
  • #39
What's wrong with Griffiths for the "beginner level"? We are focused on the "relativity-first approaches", because inevitably Purcell's Berkeley Physics Course volume is mentioned all the time (for whatever reason ;-)).

BTW: Some professors here in Frankfurt very successfully use a "relativity-first approach" at the "beginner level" (3rd semester undergrad theoretical-physics course lecture). I think in some respects the relativistic formulation is simpler than the 19th century (3+1) formulation. On the other hand for beginner the most difficult part simply is the use of vector calculus, and I don't know whether they can really appreciate the covariant 4D formalism at this stage.
 
  • #40
vanhees71 said:
What's wrong with Griffiths for the "beginner level"?
The first line in Griffiths - the very first line - is "This is a textbook on electricity and magnetism, designed for an undergraduate course at the junior or senior level".

If the author doesn't think it's intended for freshmen or sophomores, should we be recommending it?
 
  • Like
Likes Amrator and robphy
  • #41
vanhees71 said:
What's wrong with Griffiths for the "beginner level"? We are focused on the "relativity-first approaches", because inevitably Purcell's Berkeley Physics Course volume is mentioned all the time (for whatever reason ;-)).

BTW: Some professors here in Frankfurt very successfully use a "relativity-first approach" at the "beginner level" (3rd semester undergrad theoretical-physics course lecture). I think in some respects the relativistic formulation is simpler than the 19th century (3+1) formulation. On the other hand for beginner the most difficult part simply is the use of vector calculus, and I don't know whether they can really appreciate the covariant 4D formalism at this stage.
And there's a reason why Purcell is often recommended; it's a pedagogically effective, beginner level (freshman or sophomore level) textbook. Griffiths, while also a great book, is not a beginner level textbook.
 
  • #42
It all, obviously, depends on the curricula of each university and country specifics. In Europe (Germany, for example), in undergraduate (calling "Masters" 2 years of graduate studies which follow for students willing to be physicists) we have three years, covering all fundamental physics courses, from general overview in engineering, or Newtonian mechanics, up to QED and General Relativity. All compacted in 3 years after Bologna EU system. So yeah, there could be that the books meant for teaching in Europe do not apply to same-age students in the US. Most questions here (textbooks subforum) are from students in the US, so we have to know first what syllabus has an electromagnetism course for each year of university studies in the US, in order to be able to recommend appropriate texts.
 
  • #43
If you just finished Kleppner & Kolenkow, but do not have the prerequisite vector calculus, then you should use an advanced introductory text like
  1. Moore - http://www.physics.pomona.edu/sixideas/ Unit E. (Unit R deals with relativity.)
  2. Chabay & Sherwood - https://matterandinteractions.org/ (I'm not thrilled with how relativity is handled here... but geometrical and physical intuition and computation (using VPython/Glowscript) for vector calculus is good.)
  3. Purcell - Electricity and Magnetism
  4. (for mathematically-oriented students): Bamberg & Sternberg's A Course in Mathematics for Students of Physics, vols 1 and 2 ( https://www.amazon.com/dp/0521406498/?tag=pfamazon01-20 )
    This book, with apologies for the pretentious title, represents the text of a course we have been teaching at Harvard for the past eight years. The course is aimed at students with an interest in physics who have a good grounding in one-variable calculus. Some prior acquaintance with linear algebra is helpful but not necessary. Most of the students simultaneously take an intensive course in physics and so are able to integrate the material learned here with their physics education. This also is helpful but not necessary. The main topics of the course are the theory and physical application of linear algebra, and of the calculus of several variables, particularly the exterior calculus.
In some places, K&K is a honors-level introductory mechanics text.
Purcell is a common honors-level introductory electromagnetism text,
or an intermediate electromagnetism text.

Moore and Chabay&Sherwood are relatively new introductory calculus-based textbooks that
(in my opinion) try to develop a deeper understanding of concepts than is found in
typical introductory physics texts.

Griffiths is not an introductory electromagnetism textbook.
It assumes a prerequisite given by one of the above texts (or those comparable to them).
 
Last edited:
  • Like
Likes dextercioby
  • #44
Vanadium 50 said:
The first line in Griffiths - the very first line - is "This is a textbook on electricity and magnetism, designed for an undergraduate course at the junior or senior level".

If the author doesn't think it's intended for freshmen or sophomores, should we be recommending it?
I'm not familiar with the subtleties of the American curriculum. I always thought Griffiths is one of the standard texts for the introductory theoretical E&M lecture. At least it fits the purpose for the German system very well (of course you can not cover all its contents in 1 introductory semester).
 
  • Like
Likes weirdoguy
  • #45
Electromagnetics above Halliday and Resnick is not taken until the 3rd or 4th year of undergrad. Introductory electromagnetics is out of Halliday and Resnick or an equivalent text as a freshman, typically the second semester of the freshman sequence.
 
  • #46
Dr Transport said:
Electromagnetics above Halliday and Resnick is not taken until the 3rd or 4th year of undergrad. Introductory electromagnetics is out of Halliday and Resnick or an equivalent text as a freshman, typically the second semester of the freshman sequence.
This is the case in the US, except maybe at elite schools like MIT, Caltech, et al.

When do European students usually see physics at the level of H&R? Pre-undergraduate (which we call “high school”)?
 
  • #47
It was not until I started visiting forums and the like that I noticed how diverse curricula are around the world.
In my south American country, calling Halliday and Resnick pre-undergraduate feel strange. I use H&R (or equivalent books) for first year university physics. Though, first year university here is like final year high school in the US or UK.
 
  • #48
In Germany, we start with a 6-semester BSc degree. In physics there are two main series "experimental physics" and "theoretical physics". Books like Halliday and Resnick or Tipler are textbooks which can well be used in the experimental physics course. You have the standard topics

1st Semester: Mechanics and thermodynamics
2nd Semester: Electromagnetism
3rd Semester: (a) Optics (b) Atoms and Quanta
4th Semester: (a) Nucear and particle physics (b) Solid state physics

In theoretical physics a typical textbook series are the books by Greiner or Nolting

1st Semester: Mathematical methods (mostly with Newtonian mechanics)
2nd Semester: Analytical Mechanics (Lagrange, Hamilton, intro to relativity)
3rd Semester: Electromagnetism
4th Semester: Nonrelativistic quantum mechanics
5th Semester: Statistical physics

In addition you have also Mathematics for Physicists (3 semesters), the introductory and advanced labs (2+1 sem), and some minor subjects you can choose from both experimental and theoretical physics.

In the 6th semester you have to do some research and write a BSc thesis.

Then there's a 2years MSc, consisting of more special lectures in experimental and/or theoretical physics of your choice, some lab work and finally a more advanced research work towards your MSc thesis. At our university you can also choose an MSc with more focus on computational physics, where you get more IT and numerical math and also write your thesis about such topics.
 
  • #49
vanhees71 said:
1st Semester: Mechanics and thermodynamics
2nd Semester: Electromagnetism
3rd Semester: (a) Optics (b) Atoms and Quanta
4th Semester: (a) Nucear and particle physics (b) Solid state physics

In theoretical physics a typical textbook series are the books by Greiner or Nolting

1st Semester: Mathematical methods (mostly with Newtonian mechanics)
2nd Semester: Analytical Mechanics (Lagrange, Hamilton, intro to relativity)
3rd Semester: Electromagnetism
4th Semester: Nonrelativistic quantum mechanics
5th Semester: Statistical physics

In addition you have also Mathematics for Physicists (3 semesters), the introductory and advanced labs (2+1 sem), and some minor subjects you can choose from both experimental and theoretical physics.

In the 6th semester you have to do some research and write a BSc thesis.

I...have no words, I don't understand many things in that list, how do you condense so much material in 3 years?

For comparison the theoretical component was something like

1. Newtonian mechanics (Alonso & Finn), differential calculus.
2. Oscillations and (linear) waves (French, I think), integral calculus, probability, linear algebra.
3. Electromagnetism (Alonso & Finn II), Vector calculus, (ordinary) differential equations
4. Optics (Hecht), Mechanics (Marion), Complex variables, computational methods.
5. Modern physics (Alonso & Finn 3), Analytical mechanics (Goldstein), Mathematical physics (Arfken), electromagnetic theory I (Griffiths or Mildford) (<==This semester was ridiculous)
6. QM I (Griffiths), electromagnetic theory II (Sadiku, why? I don't know), Mathematical physics II (Arfken)
7. QM II (Cohen-Tannoudji), Thermodynamics, special relativity
8. Statistical physics.
9. Solid state physics.
10. Write your Bcs thesis.

I also took, as electives, particle physics (griffiths) and Intro to general relativity (Weinberg).

I suppose that list would be unfathomable for most people around the world.
 
Last edited:
  • #50
But that looks not different from the German standard curriculum, I quoted above.
 

Similar threads

Replies
21
Views
4K
Replies
26
Views
5K
Replies
6
Views
3K
Replies
3
Views
1K
Replies
9
Views
4K
Replies
6
Views
10K
Replies
23
Views
5K
Replies
23
Views
5K
Back
Top