MHB Conics- Word problem with ellipses.

Kyriakos1
Messages
3
Reaction score
0
Hi. I am given the following problem. A small bridge is shaped like a semi-ellipse. Given that its maximum height is 3m and that its foci are located 4m from the centre find the height of the bridge at a distance of 2m from its edge.

So the problem give me the values b= 3 and c=4. With this we can find a. a^2= c^2 + b^2. 16 + 9 = 25 so a = 5. From there though I am stuck.. what does 2m from the edge represent? 2m away from from vertices (-5,0) and/or (5,0)? and how do I find the height if that is the case?
 
Mathematics news on Phys.org
Kyriakos said:
Hi. I am given the following problem. A small bridge is shaped like a semi-ellipse. Given that its maximum height is 3m and that its foci are located 4m from the centre find the height of the bridge at a distance of 2m from its edge.

So the problem give me the values b= 3 and c=4. With this we can find a. a^2= c^2 + b^2. 16 + 9 = 25 so a = 5. From there though I am stuck.. what does 2m from the edge represent? 2m away from from vertices (-5,0) and/or (5,0)?
Hi Kyriakos, and welcome to MHB! Yes, 2m from the edge must mean 2m from a vertex. So the $x$-coordinate will be $\pm3$.

Kyriakos said:
and how do I find the height if that is the case?
You know that $a=5$ and $b=3$, so you should be able to write down the equation of the ellipse. Then you want to find the $y$-coordinate (the height) when $x = \pm3$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top