MHB Conics- Word problem with ellipses.

AI Thread Summary
The problem involves finding the height of a semi-elliptical bridge with a maximum height of 3m and foci located 4m from the center. Given values are b=3 and c=4, leading to a calculation of a=5 using the equation a^2 = c^2 + b^2. The discussion clarifies that "2m from the edge" refers to 2m from a vertex, resulting in an x-coordinate of ±3. To find the height at this point, the equation of the ellipse can be used to determine the corresponding y-coordinate.
Kyriakos1
Messages
3
Reaction score
0
Hi. I am given the following problem. A small bridge is shaped like a semi-ellipse. Given that its maximum height is 3m and that its foci are located 4m from the centre find the height of the bridge at a distance of 2m from its edge.

So the problem give me the values b= 3 and c=4. With this we can find a. a^2= c^2 + b^2. 16 + 9 = 25 so a = 5. From there though I am stuck.. what does 2m from the edge represent? 2m away from from vertices (-5,0) and/or (5,0)? and how do I find the height if that is the case?
 
Mathematics news on Phys.org
Kyriakos said:
Hi. I am given the following problem. A small bridge is shaped like a semi-ellipse. Given that its maximum height is 3m and that its foci are located 4m from the centre find the height of the bridge at a distance of 2m from its edge.

So the problem give me the values b= 3 and c=4. With this we can find a. a^2= c^2 + b^2. 16 + 9 = 25 so a = 5. From there though I am stuck.. what does 2m from the edge represent? 2m away from from vertices (-5,0) and/or (5,0)?
Hi Kyriakos, and welcome to MHB! Yes, 2m from the edge must mean 2m from a vertex. So the $x$-coordinate will be $\pm3$.

Kyriakos said:
and how do I find the height if that is the case?
You know that $a=5$ and $b=3$, so you should be able to write down the equation of the ellipse. Then you want to find the $y$-coordinate (the height) when $x = \pm3$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top