(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

How does Cauchy's Formula help find the power series of the complex function f(z) = e^z.

2. Relevant equations

e^z = ∑z^k/k! (sum from k = 0 to infinity)

Cauchy's Formula

Consequence of Cauchy's Formula: F(z) is analytic in a domain D and the point z1 is in D. If the disc |z - z1| < R is in D, then a power series expanded about the point z1 is valid in the disc. Furthermore, the coefficients of this power series is given by an application of Cauchy's Formula over a circle < R which is positively oriented.

3. The attempt at a solution

My book skips steps, but shows a solution. All it says is that e^z is entire, so it is analytic on the whole complex plane. e^z is its own derivative so if we take the derivative of the power series expanded about the center z1 = 0 we get ∑a*kz^(k-1), where a* are the coefficients of the series. This is again differentiable (infinitely differentiable in the disc < R). Some how, all this leads to the conclusion of what a* is by using Cauchy's Formula, but I don't understand why.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Consequences of Cauchy's Formula (differential formula)

**Physics Forums | Science Articles, Homework Help, Discussion**