Conservation of Momentum Problem - Mechanical and Kinetic Energies

Click For Summary
The discussion centers on the confusion surrounding the conservation of mechanical energy in a problem involving a bullet penetrating a block. Initially, it is stated that mechanical energy cannot be conserved due to energy loss to heat and deformation during the bullet's impact. However, the text later suggests using conservation of mechanical energy to relate kinetic and potential energy as the bullet-block system swings upward. The key clarification is that the problem consists of two distinct phases: the first phase involves energy loss during penetration, while the second phase allows for mechanical energy conservation as the system moves upward. Understanding these phases resolves the apparent contradiction in the text.
Ascendant0
Messages
175
Reaction score
38
Homework Statement
A large block of wood of mass M = 5.4 kg is hanging from two long cords. A bullet of mass m = 9.5 g is fired into the block, coming quickly to rest. The block & bullet then swing upward, their center of mass rising a vertical distance h = 6.3 cm before the pendulum comes momentarily to rest at the end of its arc. What is the speed of the bullet just prior to the collision?
Relevant Equations
## 1/2(m + M)V^2 = (m + M)gh ##
I'm confused on this problem, as I feel they state two completely contradictory things in the explanation of how to solve it. The first statement that I feel contradicts the second is this:

"We can see that the bullet’s speed v must determine the rise height h. However, we cannot use the conservation of mechanical energy to relate these two quantities because surely energy is transferred from mechanical energy to other forms (such as thermal energy and energy to break apart the wood) as the bullet penetrates the block."

That explanation makes complete sense to me. But then, I continue reading, and two paragraphs later, the text then states:

"Then conservation of mechanical energy means that the system’s kinetic energy at the start of the swing must equal its gravitational potential energy at the highest point of the swing."

And right after that paragraph, they go on to relate the two quantities with kinetic and potential energy equations (the ones in the "relevant equations" posted above). So, the first paragraph states we can't use the conservation of mechanical energy, then the second one here tells you TO use the conservation of mechanical energy, and applies it to the problem. This is copied verbatim from the text, so hopefully you can see how this is confusing me.

I would think it would be the kinetic energy of the bullet that is lost to thermal and other energies, and so the potential energy would be less than it, and that seems to be what the first paragraph indicates. But then, the second one completely throws me off.

Can someone please make sense of this and how this is not contradictory? Also, if you could please clarify what equations cannot be used in situations like this so I know for future reference what they were actually referring to, and which ones are ok to use?
 
Physics news on Phys.org
You need to consider two distinct phases.
In the first phase, the bullet becomes lodged in the block. Yes, a lot of mechanical energy is lost to heat, but it is still possible to determine the speed with which the bullet+block start to move together.
In the second phase, the moving block + bullet swing up to some height. In this phase, mechanical energy is largely conserved.
Strictly speaking, the two phases overlap slightly, but you can ignore that.
 
  • Like
Likes Ascendant0 and erobz
haruspex said:
You need to consider two distinct phases.
In the first phase, the bullet becomes lodged in the block. Yes, a lot of mechanical energy is lost to heat, but it is still possible to determine the speed with which the bullet+block start to move together.
In the second phase, the moving block + bullet swing up to some height. In this phase, mechanical energy is largely conserved.
Strictly speaking, the two phases overlap slightly, but you can ignore that.
Thank you. I do see what you're saying. It's making more sense to me now.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
55
Views
5K
Replies
21
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
1K
Replies
10
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K