- #1

- 99

- 13

- Homework Statement
- A thin uniform disc of mass M and radius R is rotating in a horizontal plane about an axis passing through its centre and perpendicular to its plane with an angular velocity ##\omega##. Another disk of same dimensions but mass M/4 is placed on the first disk coaxially. What is the angular speed of the system is now

- Relevant Equations
- ##K.E. = \frac 12I\omega^2##

##L= I\omega##

I first tried to get the solution by conserving the rotational kinetic energy and got ##\omega'=\frac2{\sqrt5} \omega##.

But, it was not the correct answer. Next I tried by conserving the angular momentum and got ##\omega'=\frac 45 \omega##, which is the correct answer.

Why is the rotational kinetic energy not conserved here? Where is the energy being used up?

But, it was not the correct answer. Next I tried by conserving the angular momentum and got ##\omega'=\frac 45 \omega##, which is the correct answer.

Why is the rotational kinetic energy not conserved here? Where is the energy being used up?