First, an unnecessary short introduction of why I'm asking this question in the first place. Due to some doubts about a certain plot device in a science-fiction novel, I'm trying to figure out how long it would take to accelerate someone to, say, 50% of the speed of light under constant acceleration from their own reference frame (for various reasons, I'm assuming about 10*g.) Due to this being a small ameteur project, I'll probably be using Wolfram Alpha.(adsbygoogle = window.adsbygoogle || []).push({});

In any case, I got the outrageously small answer of about 2.5 weeks, which doesn't sound even close to right to me. I think I've isolated my problem to how I formulate this in terms of acceleration as measured from Earth. If this bit's correct, yes, I'll post the rest of my work in a hope of others finding a minor mistake.

So, now for a formulation of the problem. Say Bob's in a spaceship and accelerating with acceleration ##100\ \dfrac{\mathrm{m}}{\mathrm{s}^2}\approx 10\cdot g## in his own reference frame. How long, measured in seconds from Earth, will it take for him to be moving at .5c with respect to Earth?

Now, after a large amount of squandering about with exhaust-based engines in which the exhaust has mass << the spaceship which resulted in very ugly expressions for momentum (##\dfrac{1\ \mathrm{m}^3\cdot\delta\cdot\frac{v-r}{1-\frac{v\cdot r}{c^2}}}{\sqrt{1-\left(\frac{\frac{v-r}{1-\frac{v\cdot r}{c^2}}}{c}\right)^2}}##, for instance,) I decided to stop and just come out with what my intuition told me the acceleration as measured from Earth is, which is ##100\ \dfrac{\mathrm{m}}{\mathrm{s}^2}\cdot\sqrt{1-\left(\dfrac vc\right)^2}##. Solving this differential equation yields the nutters result of a periodic function. So, clearly, something's wrong with this expression. But what, exactly?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Constant acceleration from accelerated observer's perspective

Loading...

Similar Threads - Constant acceleration accelerated | Date |
---|---|

I Can an object accelerate at a constant pace forever? | Sep 15, 2016 |

Constant acceleration | Jan 24, 2016 |

Metric for uniform constant acceleration? | Apr 7, 2015 |

Rigidly Constantly Accelerating Frame | Jan 29, 2015 |

Two particles, constant acceleration in their own frame | May 4, 2014 |

**Physics Forums - The Fusion of Science and Community**