I have a complex matrix, [itex]\textbf{A}[/itex], and I want to left-multiply it by a unitary matrix, [itex]\textbf{U}[/itex] (i.e. [itex]\textbf{U}[/itex] is square and [itex]\textbf{U}^H\textbf{U}=\textbf{I}[/itex]).(adsbygoogle = window.adsbygoogle || []).push({});

The goal is to find the [itex]\textbf{U}[/itex] which yields the optimal solution [itex]\textbf{B}_{opt} \triangleq \textbf{U}\textbf{A}[/itex], where [itex]\textbf{B}_{opt}[/itex] is optimal in the sense that its element-wise magnitudes are all simultaneously as close as possible to unity.

That is, I would like to minimise something like: [itex]\underline{1}^T \left|\left(\left|\textbf{B}_{opt}\right|^2 - \underline{1}\underline{1}^T\right)\right|^2 \underline{1}[/itex] (subject to [itex]\textbf{U}^H\textbf{U}=\textbf{I}[/itex]), where [itex] \left|\textbf{B}_{opt}\right|[/itex] denotes the element-by-element absolute value of [itex]\textbf{B}_{opt}[/itex] and [itex]\underline{1}[/itex] is a column vector of ones.

How can I approach this problem? I have tried to find a solution using Lagrange multipliers, but I can't seem to gain any insight into how to design [itex]\textbf{U}[/itex]. What other sorts of methods are available for this type of problem?

Any advice is greatly appreciated!

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Constraining the element-wise magnitudes of a matrix

Loading...

Similar Threads - Constraining element wise | Date |
---|---|

I Proving a property when elements of a group commute | Mar 29, 2017 |

I Definition of an irreducible element in an integral domain | Feb 18, 2017 |

Constrained Matrix Inversion | Jan 14, 2011 |

Invariance of the constrained least squares quadratic form | Jan 31, 2010 |

**Physics Forums - The Fusion of Science and Community**