I Constraint Forces and Lagrange Multipliers

AI Thread Summary
The discussion centers on the relationship between constraint functions and constraint forces in Lagrangian mechanics, using a double pendulum as an example. It explains that the constraint functions define a submanifold in the configuration space, with the gradient of these functions, ##\nabla f##, being perpendicular to this manifold. The constraint forces act on the physical plane of motion, which exists in a different space, raising questions about the alignment of ##\nabla f## and the constraint forces. The Lagrange-multiplier method is introduced to incorporate constraints into the Lagrangian, resulting in Euler-Lagrange equations that include constraint forces. Ultimately, it is concluded that constraint forces are perpendicular to the motion on the surface defined by the constraints, maintaining the relationship across different coordinate systems.
deuteron
Messages
64
Reaction score
14
TL;DR Summary
why are the gradients of the holonomic constraints perpendicular to the constraint forces
My question is about the general relationship between the constraint functions and the constraint forces, but I found it easier to explain my problem over the example of a double pendulum:
Consider a double pendulum with the generalized coordinates ##q=\{l_1,\theta_1,l_2,\theta_2\}##,:

1693837451586.png


The set of constraint functions is:
$$f=\begin{pmatrix} l_1-\text{const.}_1\\ l_2-\text{const.}_2\end{pmatrix}=0$$

Since ##f=0## describes the level curve ##N_0(f)##, it describes a submanifold in the configuration space, the generalized coordinates of phase space
Since this is a level curve, ##\nabla f## is perpendicular to the manifold embedded in the configuration space
However, the constraint *forces* act on the physical plane of motion, which is a submanifold in ##3d## space
Therefore, I don't understand how we can say that ##\nabla f\| F_\text{constraint}## in the Lagrangian mechanics, since they act on manifolds embedded in different spaces
 
Physics news on Phys.org
Let's write it down for a general case of one particle subject to one constraint, i.e., a particle moving on some surface. Then the Lagrangian reads
$$L=\frac{m}{2} \dot{\vec{x}}^2 - V(\vec{x})$$
and the (holonomous) constraint
$$f(\vec{x})=0.$$
The constraint can be implemented using the Lagrange-multiplier method, i.e., you add to the variation of the action ##-\lambda \delta \vec{x} \cdot \vec{\nabla} f##. This leads to the Euler-Lagrange equations,
$$m \ddot{\vec{x}}=-\vec{\nabla} V-\lambda \vec{\nabla} f.$$
The 2nd term on the right-hand side are the "constraint forces". Since also the constraint itself must be fulfilled you have
$$0=\frac{\mathrm{d}}{\mathrm{d} t} f(\vec{x})=\dot{\vec{x}} \cdot \vec{\nabla} f=0,$$
and thus with
$$\vec{F}_{\text{constraint}}=-\lambda \vec{\nabla} f \; \Rightarrow \; \dot{\vec{x}} \cdot \vec{F}_{\text{constraint}}=0,$$
i.e., the contraint forces are prependicular to the tangent vectors ##\dot{\vec{x}}## on the surface, described by the constraint.

The same holds of course in terms of any other coordinates as in your example. Only there of course you have two constraints constraining the mass points from the original 4D space to a 2D submanifold.
 
  • Informative
  • Like
Likes berkeman, topsquark and BvU
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...

Similar threads

Back
Top