Suppose we have a superfield [itex]\Phi(x,\theta,\bar{\theta})[/itex] this can be expanded in component fields in the standard way as:(adsbygoogle = window.adsbygoogle || []).push({});

[itex] \Phi(x,\theta,\bar{\theta})= c(x) + \theta \psi(x) + \bar{\theta} \bar{ζ}(x) + \theta^{2} F(x) + \bar{\theta}^{2} Z(x) + \theta \sigma^{\mu} \bar{\theta} u_{\mu}(x) + \theta^{2} \bar{\theta} \bar{λ}(x) + \bar{\theta}^{2} \theta β(x) + \bar{\theta}^{2} \theta^{2} D(x) [/itex]

In case we want to say that this superfield is chiral, in general we have to impose the constraint that the supercovariant derivative on it will have to vanish (depends on if it's right or left which we choose).... Nevertheless. This will bring some contraints about the component fields in [itex]\Phi[/itex]'s expansion above, which you can work by asking for the cov. derivative of it to vanish. However I'd like to ask if there's a faster way to do that, and avoid the tedious calculations.... For example I'd take a left chiral superfield:

[itex] \Phi_{L}( y, \theta) = \phi(y) + \theta \psi(y) + \theta^{2} F(y) [/itex]

and bring it from [itex]S_{L}[/itex] repr back to [itex]S[/itex], by doing a translation in the usual way:

[itex] \Phi_{L} (x+ i \theta \sigma \bar{\theta}, \theta)[/itex]

[itex]= \phi(x) + i (\theta \sigma^{\mu} \bar{\theta}) \partial_{\mu} \phi(x) - \frac{1}{2} (\theta \sigma^{\mu} \bar{\theta})(\theta \sigma^{\nu} \bar{\theta}) \partial_{\mu} \partial_{\nu} \phi(x) + \theta \psi(x) + i (\theta \sigma^{\mu} \bar{\theta}) (\theta \partial_{\mu} \psi)+ \theta^{2} F(x) [/itex]

If I now try to compare the first superfield's components with the last one, shouldn't I get the constraints needed for it to be a chiral superfield?

eg fastly:

[itex]\bar{ζ}(x)=0[/itex]

[itex] Z(x)=0 [/itex]

[itex]D(x)= -\frac{1}{4} \partial_{\mu} \partial^{\mu} \phi[/itex] ( because [itex] (\theta \sigma^{\mu} \bar{\theta})(\theta \sigma^{\nu} \bar{\theta})=\frac{1}{2} n^{\mu \nu} \theta^{2} \bar{\theta}^{2}[/itex])

[itex] u_{\mu}= i \partial_{\mu} \phi(x) [/itex]

[itex]β(x)=0 [/itex]

etc...

**Physics Forums - The Fusion of Science and Community**

# Constraints on Chiral superfield

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Constraints on Chiral superfield

Loading...

**Physics Forums - The Fusion of Science and Community**