Construct a mathematical formula

AI Thread Summary
The discussion revolves around creating a mathematical formula for simulating human consumption probability, influenced by personal belief and positive and negative factors. The initial approach was a weighted sum, but this method failed to produce the desired outcomes, particularly in enforcing positive influences. Suggestions include exploring weight adjustments, using linear regression for fitting weights, and considering different optimization functions like MAE and MSE. There is also a recommendation to explore non-linear models, such as neural networks, although this may be excessive for a model with only three inputs. The user emphasizes the need for a formula that accurately reflects the influences on consumption.
adan
Messages
13
Reaction score
3
Hello,
I have been thinking of it for a long time, and I would appreciate suggestions from math experts.

I am working on a simulation of human agents. I want to set up a formula that defines the consumption probability (0,1), which consists of X, a value between 0 and 1, and two positive and negative integer values (0,1). The idea is to combine these variables. If positive influence is high, consumption should increase if negative influence is high, consumption should decrease. X represents personal belief without any influence.
The X and the influences variables are computed differently.

I thought of a weighted sum but that doesn't give the expected output.

Thank you!
 
Mathematics news on Phys.org
adan said:
I thought of a weighted sum but that doesn't give the expected output.
A weighted sum is the obvious first choice; what do you mean 'doesn't give the expected output'?

Did you set the weights manually - if so have you fully explored how your model responds to adjusting the weights?

If you have a sample 'expected output' have you tried fitting the weights using linear regression? Have you tried different optimisation functions (e.g. mean absolute error (MAE) as well as mean squared error (MSE))?

If this is still not working for you then this may be due to the inherent limitation of linearity of the model. To break through this you could consider using a neural net (a weighted sum is essentially a neural net with no hidden layers and a single neuron with a linear activation function in the output layer). However this is probably overkill for such a simple model with only 3 inputs.
 
Consider a portfolio of at least two stocks, take the consumption as the expectation value of returns, and the influences as the covariances.
 
pbuk said:
A weighted sum is the obvious first choice; what do you mean 'doesn't give the expected output'?

Did you set the weights manually - if so have you fully explored how your model responds to adjusting the weights?

If you have a sample 'expected output' have you tried fitting the weights using linear regression? Have you tried different optimisation functions (e.g. mean absolute error (MAE) as well as mean squared error (MSE))?

If this is still not working for you then this may be due to the inherent limitation of linearity of the model. To break through this you could consider using a neural net (a weighted sum is essentially a neural net with no hidden layers and a single neuron with a linear activation function in the output layer). However this is probably overkill for such a simple model with only 3 inputs.
Thank you @pbuk, for your answer!. I noticed that the weighted sum doesn't give what I expect. I don't have data but just some intuition. For example consumption = w1*X +w2 * Infpositive - w2 * infnegative.
I assume w1 should not be too small(> 0.5). I found that using the weighted sum can't enforce the positive effect. I use a negative weight w2 to achieve the negative influence.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top