MHB Construct a matrix with such that V is not equal to C_x

  • Thread starter Thread starter catsarebad
  • Start date Start date
  • Tags Tags
    Matrix
Click For Summary
To construct a matrix A in Mat_n*n(F) such that V is not equal to C_x for every x in V, it is suggested to choose a non-invertible matrix. A non-invertible matrix guarantees that there exists a non-zero vector x for which Ax equals zero, leading to the conclusion that the cyclic subspace C_x generated by x will only include x and the zero vector. This means C_x cannot span the entire vector space V. The discussion emphasizes the relationship between the properties of matrix A and the cyclic subspace C_x, clarifying that if A is not invertible, C_x cannot cover V. Understanding this relationship is crucial for the problem at hand.
catsarebad
Messages
69
Reaction score
0
for each n greater than or equal to,

construct a matrix A that belongs to Mat_n*n (F) such that

V is not equal to C_x for every x that belongs to V

here,

C_x = span {x, L(x), L^2(x), ....L^k(x),...}
 
Physics news on Phys.org
This is easy. Hint: pick a "bad" matrix (one that is not invertible). Why will this guarantee that $C_x$ will not span $V$?
 
Deveno said:
This is easy. Hint: pick a "bad" matrix (one that is not invertible). Why will this guarantee that $C_x$ will not span $V$?

I do not know (Speechless)

I cannot figure out how A correlated to C_x. Could you please explain that to me? Thanks a ton. (heart)
 
Suppose $A$ is such that $Ax = 0$ for some non-zero $x$. What can you say about $C_x$ then?
 
Deveno said:
Suppose $A$ is such that $Ax = 0$ for some non-zero $x$. What can you say about $C_x$ then?

still dunno. i think i just do not get what A is with respect to C_x. i know C_x is cyclic subspace generated by x that is spanned by vectors, x, L(x),...

but what is A? how does it relate to x, L(x), C_x, etc?
 
If $Ax = 0$ (which is true for SOME non-zero $x$ if $A$ is not invertible) then:

$C_x = \{x,Ax,A^2x,\dots\} = \{x,0,0,\dots\}$

HOW CAN THIS SPAN $V$?
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K