Constructing a matrix version of the transformation algorithm?

Click For Summary
SUMMARY

This discussion focuses on constructing a matrix representation of the transformation algorithm defined as $(x, y) \to (\frac{x}{k} + p, ay + d)$. Participants clarify that while traditional algorithms do not typically utilize matrices for such transformations, a matrix form can be derived using 1x1 matrices or more complex structures. The transformation can be expressed as a matrix operation involving variables and constants, specifically in the form of $(x', y') = (x, y)A$ for a suitable matrix A. The discussion emphasizes the need to align the transformation with matrix multiplication principles.

PREREQUISITES
  • Understanding of matrix multiplication principles
  • Familiarity with transformation algorithms in mathematics
  • Knowledge of linear algebra concepts
  • Basic understanding of function transformations
NEXT STEPS
  • Research matrix representation of linear transformations
  • Study the properties of 1x1 matrices in transformation algorithms
  • Learn about function transformations and their graphical implications
  • Explore advanced matrix operations in linear algebra
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in the application of matrices in transformation algorithms will benefit from this discussion.

eleventhxhour
Messages
73
Reaction score
0
Algorithms like the transformation algorithm: $(x, y)$ --> $(\frac{x}{k} + p, ay + d)$ are not generally used in mathematics. Instead, we use matrices.

Multiplying matrixes: you multiply a row of the first matrix by a column of the second. Use the following example:

$ \begin{bmatrix}x & y \end{bmatrix}\begin{bmatrix}a & b \\ c & d \end{bmatrix} = \begin{bmatrix}ax + cy & bx + dy \end{bmatrix} $

Use this information to construct a matrix version of the transformation algorithm for the transformation $y=af[k(x−p)]+d$
 
Last edited by a moderator:
Physics news on Phys.org
eleventhxhour said:
Algorithms like the transformation algorithm: $(x, y)$ --> $(\frac{x}{k} + p, ay + d)$ are not generally used in mathematics. Instead, we use matrices.

Multiplying matrixes: you multiply a row of the first matrix by a column of the second. Use the following example:

$ \begin{bmatrix}x & y \end{bmatrix}\begin{bmatrix}a & b \\ c & d \end{bmatrix} = \begin{bmatrix}ax + cy & bx + dy \end{bmatrix} $

Use this information to construct a matrix version of the transformation algorithm for the transformation $y=af[k(x−p)]+d$

Welcome to MHB, eleventhxhour!

Usually matrices are used if you have at least 2 variables (typically x and y) that are transformed in 2 new variables.

That is not the case for your transformation, so it makes little sense to write it in matrix notation.

Anyway, if you really want to, it could be written with 1x1 matrices as:
$$\begin{bmatrix} y \end{bmatrix}
= \begin{bmatrix} x−p \end{bmatrix} \begin{bmatrix} afk \end{bmatrix} + \begin{bmatrix} d \end{bmatrix}$$
or
$$\begin{bmatrix} y \end{bmatrix}
= \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} afk \end{bmatrix} + \begin{bmatrix} d -afkp \end{bmatrix}
$$

Or a more advanced form:
$$\begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} afk \\ d - afkp \end{bmatrix}$$
 
eleventhxhour said:
Use this information to construct a matrix version of the transformation algorithm for the transformation $y=af[k(x−p)]+d$
I suspect that $f$ is a function here. Let $g(x)=af\big(k(x-p)\big)+d$. Then the required transformation probably converts the graph of $f(x)$ into the graph of $g(x)$. OP, please confirm if this is the correct interpretation.
 
Evgeny.Makarov said:
I suspect that $f$ is a function here. Let $g(x)=af\big(k(x-p)\big)+d$. Then the required transformation probably converts the graph of $f(x)$ into the graph of $g(x)$. OP, please confirm if this is the correct interpretation.

Yes, I'm pretty sure that's the correct interpretation.
 
eleventhxhour said:
Yes, I'm pretty sure that's the correct interpretation.

What is the definition of $f$ then?
Is it perhaps related to your transformation algorithm: $(x, y) \to(\frac{x}{k} + p, ay + d)$?
It seems to fit.
 
I like Serena said:
What is the definition of $f$ then?
Is it perhaps related to your transformation algorithm: $(x, y) \to(\frac{x}{k} + p, ay + d)$?
It seems to fit.
Yes, this transformation maps the graph of $f(x)$ into that of $g(x)$. It cannot be represented in the form
\[
(x',y')=(x,y)A\qquad(*)
\]
for a 2x2 matrix A. Indeed, (*) maps $(0,0)$ to $(0,0)$, while the transformation in the quote maps $(0,0)$ to $(p,d)$. But note that
\[
(x,y,1)
\begin{pmatrix}
a_{11}&a_{12}&0\\
a_{21}&a_{22}&0\\
a_{1}&a_{b2}&1
\end{pmatrix}
=(a_{11}x+a_{21}y+b_1, a_{12}x+a_{22}y+b_2,1)
\]
You need to come up with a matrix that produces
\[
((1/k)x +0y + p, 0x+ay + d,1)
\]
 
Last edited:
Evgeny.Makarov said:
Yes, this transformation maps the graph of $f(x)$ into that of $g(x)$. It cannot be represented in the form
\[
(x',y')=(x,y)A\qquad(*)
\]
for a 2x2 matrix A. Indeed, (*) maps $(0,0)$ to $(0,0)$, while the transformation in the quote maps $(0,0)$ to $(p,d)$. But note that
\[
(x,y,1)
\begin{pmatrix}
a_{11}&a_{12}&0\\
a_{21}&a_{22}&0\\
a_{1}&a_{b2}&1
\end{pmatrix}
=a_{11}x+a_{21}y+b_1, a_{12}x+a_{22}y+b_2,1)
\]
You need to come up with a matrix that produces
\[
((1/k)x +0y + p, 0x+ay + d,1)
\]

Hmm..okay, I think I understand that a bit more. How would you create that matrix?
 
eleventhxhour said:
How would you create that matrix?
You compare the two expressions
\[
(a_{11}x+a_{21}y+b_1, a_{12}x+a_{22}y+b_2,1)
\]
and
\[
((1/k)x +0y + p, 0x+ay + d,1)
\]
and come up with appropriate $a_{ij}$ and $b_i$ so that the expressions coincide.
 
Hi,
I hope the following discussion helps:

33v0x2o.png
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K