Constructing a matrix version of the transformation algorithm?

Click For Summary

Discussion Overview

The discussion revolves around constructing a matrix representation of a transformation algorithm, specifically the transformation $(x, y) \to (\frac{x}{k} + p, ay + d)$. Participants explore the feasibility of expressing this transformation in matrix form, considering its implications in the context of graph transformations of functions.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested

Main Points Raised

  • Some participants note that the transformation algorithm is not typically represented using matrices, suggesting that matrices are more suitable for transformations involving multiple variables.
  • One participant proposes that the transformation could be expressed using 1x1 matrices, providing several formulations.
  • Another participant suspects that $f$ is a function and suggests that the transformation converts the graph of $f(x)$ into that of $g(x)$, seeking confirmation from the original poster (OP).
  • There is a discussion about the limitations of representing the transformation in the form $(x',y')=(x,y)A$ for a 2x2 matrix A, with references to how the transformation maps points differently than standard matrix transformations.
  • Participants discuss the need to derive appropriate matrix coefficients that would allow the transformation to be expressed in matrix form, comparing different expressions to find suitable values for the matrix elements.

Areas of Agreement / Disagreement

Participants generally agree on the interpretation of the transformation in relation to graph transformations, but there is no consensus on the feasibility of expressing it in matrix form, with some arguing against it while others explore potential formulations.

Contextual Notes

The discussion includes various interpretations of the transformation and its components, particularly the role of the function $f$ and the implications of using matrix notation. There are unresolved questions regarding the definitions and relationships between the variables involved.

eleventhxhour
Messages
73
Reaction score
0
Algorithms like the transformation algorithm: $(x, y)$ --> $(\frac{x}{k} + p, ay + d)$ are not generally used in mathematics. Instead, we use matrices.

Multiplying matrixes: you multiply a row of the first matrix by a column of the second. Use the following example:

$ \begin{bmatrix}x & y \end{bmatrix}\begin{bmatrix}a & b \\ c & d \end{bmatrix} = \begin{bmatrix}ax + cy & bx + dy \end{bmatrix} $

Use this information to construct a matrix version of the transformation algorithm for the transformation $y=af[k(x−p)]+d$
 
Last edited by a moderator:
Physics news on Phys.org
eleventhxhour said:
Algorithms like the transformation algorithm: $(x, y)$ --> $(\frac{x}{k} + p, ay + d)$ are not generally used in mathematics. Instead, we use matrices.

Multiplying matrixes: you multiply a row of the first matrix by a column of the second. Use the following example:

$ \begin{bmatrix}x & y \end{bmatrix}\begin{bmatrix}a & b \\ c & d \end{bmatrix} = \begin{bmatrix}ax + cy & bx + dy \end{bmatrix} $

Use this information to construct a matrix version of the transformation algorithm for the transformation $y=af[k(x−p)]+d$

Welcome to MHB, eleventhxhour!

Usually matrices are used if you have at least 2 variables (typically x and y) that are transformed in 2 new variables.

That is not the case for your transformation, so it makes little sense to write it in matrix notation.

Anyway, if you really want to, it could be written with 1x1 matrices as:
$$\begin{bmatrix} y \end{bmatrix}
= \begin{bmatrix} x−p \end{bmatrix} \begin{bmatrix} afk \end{bmatrix} + \begin{bmatrix} d \end{bmatrix}$$
or
$$\begin{bmatrix} y \end{bmatrix}
= \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} afk \end{bmatrix} + \begin{bmatrix} d -afkp \end{bmatrix}
$$

Or a more advanced form:
$$\begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} afk \\ d - afkp \end{bmatrix}$$
 
eleventhxhour said:
Use this information to construct a matrix version of the transformation algorithm for the transformation $y=af[k(x−p)]+d$
I suspect that $f$ is a function here. Let $g(x)=af\big(k(x-p)\big)+d$. Then the required transformation probably converts the graph of $f(x)$ into the graph of $g(x)$. OP, please confirm if this is the correct interpretation.
 
Evgeny.Makarov said:
I suspect that $f$ is a function here. Let $g(x)=af\big(k(x-p)\big)+d$. Then the required transformation probably converts the graph of $f(x)$ into the graph of $g(x)$. OP, please confirm if this is the correct interpretation.

Yes, I'm pretty sure that's the correct interpretation.
 
eleventhxhour said:
Yes, I'm pretty sure that's the correct interpretation.

What is the definition of $f$ then?
Is it perhaps related to your transformation algorithm: $(x, y) \to(\frac{x}{k} + p, ay + d)$?
It seems to fit.
 
I like Serena said:
What is the definition of $f$ then?
Is it perhaps related to your transformation algorithm: $(x, y) \to(\frac{x}{k} + p, ay + d)$?
It seems to fit.
Yes, this transformation maps the graph of $f(x)$ into that of $g(x)$. It cannot be represented in the form
\[
(x',y')=(x,y)A\qquad(*)
\]
for a 2x2 matrix A. Indeed, (*) maps $(0,0)$ to $(0,0)$, while the transformation in the quote maps $(0,0)$ to $(p,d)$. But note that
\[
(x,y,1)
\begin{pmatrix}
a_{11}&a_{12}&0\\
a_{21}&a_{22}&0\\
a_{1}&a_{b2}&1
\end{pmatrix}
=(a_{11}x+a_{21}y+b_1, a_{12}x+a_{22}y+b_2,1)
\]
You need to come up with a matrix that produces
\[
((1/k)x +0y + p, 0x+ay + d,1)
\]
 
Last edited:
Evgeny.Makarov said:
Yes, this transformation maps the graph of $f(x)$ into that of $g(x)$. It cannot be represented in the form
\[
(x',y')=(x,y)A\qquad(*)
\]
for a 2x2 matrix A. Indeed, (*) maps $(0,0)$ to $(0,0)$, while the transformation in the quote maps $(0,0)$ to $(p,d)$. But note that
\[
(x,y,1)
\begin{pmatrix}
a_{11}&a_{12}&0\\
a_{21}&a_{22}&0\\
a_{1}&a_{b2}&1
\end{pmatrix}
=a_{11}x+a_{21}y+b_1, a_{12}x+a_{22}y+b_2,1)
\]
You need to come up with a matrix that produces
\[
((1/k)x +0y + p, 0x+ay + d,1)
\]

Hmm..okay, I think I understand that a bit more. How would you create that matrix?
 
eleventhxhour said:
How would you create that matrix?
You compare the two expressions
\[
(a_{11}x+a_{21}y+b_1, a_{12}x+a_{22}y+b_2,1)
\]
and
\[
((1/k)x +0y + p, 0x+ay + d,1)
\]
and come up with appropriate $a_{ij}$ and $b_i$ so that the expressions coincide.
 
Hi,
I hope the following discussion helps:

33v0x2o.png
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K