What is the Definition of Continuity in Minkowski Space?

Click For Summary
Continuity in Minkowski space can be defined using the canonical Euclidean topology rather than the Minkowski metric, which misrepresents point proximity. The discussion highlights that Minkowski space is essentially a four-dimensional real vector space characterized by a specific quadratic form with signature (1,3). While pseudo-Riemannian metric tensors can theoretically induce a topology, the consensus is that the Euclidean norm is a more practical approach for defining continuity. Alternative topologies can also be applied to Minkowski space, which do not necessarily rely on a metric. The Geometry of Minkowski Spacetime by Naber is recommended for further exploration of these concepts.
cosmic dust
Messages
123
Reaction score
0
How "continuity" of a map Τ:M→M, where M is a Minkowski space, can be defined? Obviously I cannot use the "metric" induced by the minkowskian product:
x\cdoty = -x^{0}y^{0}+x^{i}y^{i}
for the definition of coninuity; it is a misinformer about the proximity of points. Should I use the Euclidean metric instead?

Thank's...
 
Physics news on Phys.org
Minkowski space-time is just ##\mathbb{R}^{4}## with the canonical Euclidean topology. Continuity of endomorphisms of Minkowski space-time is with respect to this topology.
 
  • Like
Likes 1 person
I took the wikipedia's definition of Minkowski space: a 4-D real vector space with a symmetric, bilinear, non-degenerate quadratic form with signature (1,3). From this point of view, can a consistent metric induced by that quadratic form? If not, then according to your comment, I will have to make use and of the Eucliden norm on that vector space, in order to define continuity.

Right?
 
cosmic dust said:
I took the wikipedia's definition of Minkowski space: a 4-D real vector space with a symmetric, bilinear, non-degenerate quadratic form with signature (1,3). From this point of view, can a consistent metric induced by that quadratic form? If not, then according to your comment, I will have to make use and of the Eucliden norm on that vector space, in order to define continuity.
I've never seen pseudo-Riemannian metric tensors on vector spaces being used to induce a topology on the vector space but that's not to say that it isn't defined (you can define it in the same way). The canonical topology on Minkowski space-time would just be that generated by the base of open balls of the Euclidean metric yes. There are other topologies you can endow as well of course and they don't have to stem from a metric.
 
  • Like
Likes 1 person
The beautiful [math] book "The Geometry of Minkowski Spacetime: An Introduction to the Mathematics of the Special Theory of Relativity" by Naber has an appendix that discusses topology for Minkowski spacetime.
 
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 4 ·
Replies
4
Views
969
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K