Continuity of a function under Euclidean topology

Click For Summary
The discussion centers on determining the continuity of the function f: X → Y, where X = Y = ℝ² under Euclidean topology. The continuity criterion involves checking if the pre-image of every open set U in Y is open in X. Participants suggest leveraging the properties of continuous functions, noting that the sum, product, and composition of continuous functions are also continuous, which simplifies the problem. There is confusion regarding the types of open sets available, with some participants mistakenly referencing the trivial topology. Ultimately, the conclusion is that the complexity of f does not impede its continuity if the correct topological framework is applied.
RiotRick
Messages
42
Reaction score
0

Homework Statement


Let ##f:X\rightarrow Y## with X = Y = ##\mathbb{R}^2## an euclidean topology.
## f(x_1,x_2) =( x^2_1+x_2*sin(x_1),x^3_2-sin(e^{x_1+x_2} ) )##
Is f continuous?

Homework Equations


f is continuous if for every open set U in Y, its pre-image ##f^{-1}(U)## is open in X.
or if ##B_{\delta}(a) \subset (f^{-1}(B_{\epsilon}(f(a)))##

The Attempt at a Solution


I've done some simple examples but they all had some values to work with like ##f^{-1}(1) =## ...
Here I have to parameters and not really good sets. The only open sets I see, are##\emptyset## and ##\mathbb{R}^2## but I don't know if ##f^{-1}(\emptyset)## is allowed nor if ##f^{-1}(\mathbb{R}^2)## is of any help.
During my research I found out that I can look at ##x^2_1+x_2*sin(x_1)## and ## x^3_2-sin(e^{x_1+x_2}## separately. Is that Correct? In my script is nothing mentioned about product toplogies.
So I guess I have to construct a Ball but how can I define such a Ball without any boundaries in the task?

I'm thank full for any Help. Note I just started with this topic
 
Physics news on Phys.org
RiotRick said:

Homework Statement


Let ##f:X\rightarrow Y## with X = Y = ##\mathbb{R}^2## an euclidean topology.
## f(x_1,x_2) =( x^2_1+x_2*sin(x_1),x^3_2-sin(e^{x_1+x_2} ) )##
Is f continuous?

Homework Equations


f is continuous if for every open set U in Y, its pre-image ##f^{-1}(U)## is open in X.
or if ##B_{\delta}(a) \subset (f^{-1}(B_{\epsilon}(f(a)))##

The Attempt at a Solution


I've done some simple examples but they all had some values to work with like ##f^{-1}(1) =## ...
Here I have to parameters and not really good sets. The only open sets I see, are##\emptyset## and ##\mathbb{R}^2## but I don't know if ##f^{-1}(\emptyset)## is allowed nor if ##f^{-1}(\mathbb{R}^2)## is of any help.
During my research I found out that I can look at ##x^2_1+x_2*sin(x_1)## and ## x^3_2-sin(e^{x_1+x_2}## separately. Is that Correct? In my script is nothing mentioned about product toplogies.
So I guess I have to construct a Ball but how can I define such a Ball without any boundaries in the task?

I'm thank full for any Help. Note I just started with this topic

Where did you get this question?

I'm not sure how you would go about tackling a function like this from first principles. It would be simpler to prove that the sum, product and composition of continuous functions is also continuous. Or, use these as existing theorems.
 
You also say that the only open sets are ##\varnothing## and ##\mathbb{R}^2##. That's what's called the trivial (not euclidean) topology. If that's really the case, the problem is pretty easy and that ##f## is somewhat complicated is not an issue.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
23
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
20
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K