Continuity of a function under Euclidean topology

  • #1
42
0

Homework Statement


Let ##f:X\rightarrow Y## with X = Y = ##\mathbb{R}^2## an euclidean topology.
## f(x_1,x_2) =( x^2_1+x_2*sin(x_1),x^3_2-sin(e^{x_1+x_2} ) )##
Is f continuous?

Homework Equations


f is continuous if for every open set U in Y, its pre-image ##f^{-1}(U)## is open in X.
or if ##B_{\delta}(a) \subset (f^{-1}(B_{\epsilon}(f(a)))##

The Attempt at a Solution


I've done some simple examples but they all had some values to work with like ##f^{-1}(1) =## ...
Here I have to parameters and not really good sets. The only open sets I see, are##\emptyset## and ##\mathbb{R}^2## but I don't know if ##f^{-1}(\emptyset)## is allowed nor if ##f^{-1}(\mathbb{R}^2)## is of any help.
During my research I found out that I can look at ##x^2_1+x_2*sin(x_1)## and ## x^3_2-sin(e^{x_1+x_2}## separately. Is that Correct? In my script is nothing mentioned about product toplogies.
So I guess I have to construct a Ball but how can I define such a Ball without any boundaries in the task?

I'm thank full for any Help. Note I just started with this topic
 

Answers and Replies

  • #2

Homework Statement


Let ##f:X\rightarrow Y## with X = Y = ##\mathbb{R}^2## an euclidean topology.
## f(x_1,x_2) =( x^2_1+x_2*sin(x_1),x^3_2-sin(e^{x_1+x_2} ) )##
Is f continuous?

Homework Equations


f is continuous if for every open set U in Y, its pre-image ##f^{-1}(U)## is open in X.
or if ##B_{\delta}(a) \subset (f^{-1}(B_{\epsilon}(f(a)))##

The Attempt at a Solution


I've done some simple examples but they all had some values to work with like ##f^{-1}(1) =## ...
Here I have to parameters and not really good sets. The only open sets I see, are##\emptyset## and ##\mathbb{R}^2## but I don't know if ##f^{-1}(\emptyset)## is allowed nor if ##f^{-1}(\mathbb{R}^2)## is of any help.
During my research I found out that I can look at ##x^2_1+x_2*sin(x_1)## and ## x^3_2-sin(e^{x_1+x_2}## separately. Is that Correct? In my script is nothing mentioned about product toplogies.
So I guess I have to construct a Ball but how can I define such a Ball without any boundaries in the task?

I'm thank full for any Help. Note I just started with this topic

Where did you get this question?

I'm not sure how you would go about tackling a function like this from first principles. It would be simpler to prove that the sum, product and composition of continuous functions is also continuous. Or, use these as existing theorems.
 
  • #3
You also say that the only open sets are ##\varnothing## and ##\mathbb{R}^2##. That's what's called the trivial (not euclidean) topology. If that's really the case, the problem is pretty easy and that ##f## is somewhat complicated is not an issue.
 

Suggested for: Continuity of a function under Euclidean topology

Replies
2
Views
729
Replies
2
Views
554
Replies
10
Views
320
Replies
10
Views
378
Replies
8
Views
258
Replies
3
Views
139
Back
Top