(adsbygoogle = window.adsbygoogle || []).push({}); The problem statement, all variables and given/known data

Let (E, m) and (E', m') be metric spaces, let A and B be closed subsets of E such that their union equals E, and let f be a function from E into E'. Prove that if f is continuous on A and on B, then f is continuous on E.

The attempt at a solution

I have approached this problem in three ways, but in each I get stuck.

First approach: Let S' be a closed subset of E' and let S = f^{-1}(S'). If I can demonstrate the S is closed, then f is continuous on E. I wrote S as [tex](S \cap A) \cup (S \cap B)[/tex] and attempted to demonstrate that each intersection is closed. However, each intersection is closed if S is closed. This is a circular argument so it won't work. What else can I do here?

Second approach: Let p belong to E and let e > 0. Then either p belongs to A or p belongs to B. If the former, then there is a d(A) > 0 such that m'(f(p), f(q)) < e for all q in A satisfying m(p, q) < d(A). Now suppose there is a s in E such that m(p, s) < d(A) but m'(f(p), f(s)) ≥ e. This s must be in B. Since f is continuous on B, there is a d(B) > 0 such that m'(f(s), f(q)) < e for all in B satisfying m(s, q) < d(B). I don't know how to proceed from here.

Third approach: Suppose by way of contradiction that f is not continuous on E. Then for some p in E, for some e > 0, for all d > 0, there is a q in E such m(p, q) < d but m'(f(p), f(q)) ≥ e. I stopped here when I realized this is proceeding similarly as the second approach.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Continuity on Restrictions Implies Continuity Everywhere

**Physics Forums | Science Articles, Homework Help, Discussion**