Contour Integration over Square, Complex Anaylsis

Click For Summary
SUMMARY

The integral of the function \( e^z \) over the closed contour \( C \), defined by the vertices at \( z = 0, z = 1, z = 1 + i, \) and \( z = i \), equals zero. This conclusion is supported by Cauchy's theorem, which states that if a function is analytic within and on a closed contour, the integral over that contour is zero. The discussion emphasizes the necessity for the function to be analytic not only on the contour but also at all points interior to it. The parametrization of the contour and the computation of the integral over its four sides were also discussed as an instructive approach.

PREREQUISITES
  • Understanding of complex functions and analyticity
  • Familiarity with Cauchy's theorem in complex analysis
  • Knowledge of contour integration techniques
  • Ability to parametrize curves in the complex plane
NEXT STEPS
  • Study the implications of Cauchy's theorem on contour integrals
  • Learn how to parametrize complex contours effectively
  • Explore examples of functions that are not analytic and their impact on contour integrals
  • Practice computing integrals over various closed contours in the complex plane
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on complex analysis, as well as anyone interested in mastering contour integration techniques.

Safder Aree
Messages
42
Reaction score
1

Homework Statement


Show that
$$\int_C e^zdz = 0$$

Let C be the perimeter of the square with vertices at the points z = 0, z = 1, z = 1 +i and z = i.

Homework Equations


$$z = x + iy$$

The Attempt at a Solution


I know that if a function is analytic/holomorphic on a domain and the contour lies within the domain lies. Then this integral equals 0. I can prove that e^z is analytic everywhere. (using cauchy-riemann) Is that enough to show it works in this case?
 
Physics news on Phys.org
Let me make the statement more correct. Cauchy's theorem says that an analytic function has integral zero over a closed contour, lying in its region of analyticity, provided that contour does not wind around any point where the function is not analytic. In the case of a simple closed contour like this one, that means the function must be analytic on the contour as well as on the points interior to the contour. Does that apply?

In this extremely simple case, it might be more instructive to actually parametrize the contour and compute the integral over the four sides.

Notice that your less precise statement of the Cauchy theorem, ("I know that..."), would also imply that the integral of 1/z is zero over this contour, which is false. I.e. the function needs to be analytic not just on the contour but also at points "interior to" the contour.

Oh yes, and a contour is normally oriented, but when the integral is zero, it does not matter much for the value, since zero = -zero.
 
  • Like
Likes Safder Aree
mathwonk said:
Let me make the statement more correct. Cauchy's theorem says that an analytic function has integral zero over a closed contour, lying in its region of analyticity, provided that contour does not wind around any point where the function is not analytic. In the case of a simple closed contour like this one, that means the function must be analytic on the contour as well as on the points interior to the contour. Does that apply?

In this extremely simple case, it might be more instructive to actually parametrize the contour and compute the integral over the four sides.

Notice that your less precise statement of the Cauchy theorem, ("I know that..."), would also imply that the integral of 1/z is zero over this contour, which is false. I.e. the function needs to be analytic not just on the contour but also at points "interior to" the contour.

That makes sense. Thank you. I'll just solve the integral.
 
I'm not sure if I am parametrizing this correctly, would you be able to double check where i am going wrong?

So for the path 0 -> 1.

$$z(t) = t, z'(t) = 1$$

$$\int_0^1 e^t dt $$Path 1-> 1+i
$$ z(t) = 1 + it, z'(t) = 1$$
$$\int_0^1 e^{(1+it)}dt $$

Path 1+i -> i
$$z(t) = 1+i -t, z'(t) = -1$$
$$-\int_0^1 e^{1+i -t}dt$$

Path i -> 0
$$z(t) = i -t, z'(t) = -1$$
$$-\int_0^1 e^{i-t}dt$$
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 26 ·
Replies
26
Views
5K
Replies
32
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
963
  • · Replies 2 ·
Replies
2
Views
3K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K