Undergrad Contracted Christoffel symbols in terms determinant(?) of metric

Click For Summary
The discussion revolves around proving that the contracted Christoffel symbols, denoted as Γ_ab^b, can be expressed as the partial derivative of the logarithm of the square root of the determinant of the metric tensor. The initial confusion about taking the square root of a tensor is clarified by recognizing that the square root refers to the determinant of the metric tensor. The derivation shows that Γ_ab^b can be simplified to 1/2 g^(-1) ∂_a g, leading to the conclusion that the expression holds true for any metric, not just diagonal ones. The participant acknowledges that a similar exercise in Carroll's work is limited to diagonal metrics, indicating a broader applicability of their findings. Ultimately, the proof is confirmed to be valid for all metric types.
George Keeling
Gold Member
Messages
183
Reaction score
42
TL;DR
Should I try to prove this with non-diagonal metric?
M. Blennow's book has problem 2.18:
Show that the contracted Christoffel symbols ##\Gamma_{ab}^b## can be written in terms of a partial derivative of the logarithm of the square root of the metric tensor $$\Gamma_{ab}^b=\partial_a\ln{\sqrt g}$$I think that means square root of the determinant of the metric tensor (and it does in the next question). I don't know how to take a square root of a tensor.

I start with $$\partial_a\ln{\sqrt g}=\frac{1}{2}\partial_a\ln{g}=\frac{1}{2}\frac{1}{g}\partial_ag=\frac{1}{2}g^{-1}\partial_ag$$and$$\Gamma_{ab}^b=\frac{1}{2}g^{bc}\left(\partial_ag_{cb}+\partial_bg_{ac}-\partial_cg_{ab}\right)$$If the metric is diagonal it is pretty easy to show in ##n##-dimensions that those are both the same as$$\frac{1}{2}\sum_{i=1}^{i=n}{g^{ii}\partial_ag_{ii}}$$Should I be trying to prove ##\Gamma_{ab}^b=\partial_a\ln{\sqrt g}\ ## for a non-diagonal metric too?

(Carroll has a similar exercise which is restricted to a diagonal metric. Perhaps he is just not so cruel!)
 
Physics news on Phys.org
Oops! After a refreshing nights sleep I remembered that ##\partial_ag=gg^{bc}\partial_ag_{bc}## and saw the light. So ##\Gamma_{ab}^b=\partial_a\ln{\sqrt g}## is true for any old metric.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
19
Views
2K
  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
7K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 18 ·
Replies
18
Views
3K