I Contracted Christoffel symbols in terms determinant(?) of metric

George Keeling
Gold Member
Messages
180
Reaction score
41
TL;DR Summary
Should I try to prove this with non-diagonal metric?
M. Blennow's book has problem 2.18:
Show that the contracted Christoffel symbols ##\Gamma_{ab}^b## can be written in terms of a partial derivative of the logarithm of the square root of the metric tensor $$\Gamma_{ab}^b=\partial_a\ln{\sqrt g}$$I think that means square root of the determinant of the metric tensor (and it does in the next question). I don't know how to take a square root of a tensor.

I start with $$\partial_a\ln{\sqrt g}=\frac{1}{2}\partial_a\ln{g}=\frac{1}{2}\frac{1}{g}\partial_ag=\frac{1}{2}g^{-1}\partial_ag$$and$$\Gamma_{ab}^b=\frac{1}{2}g^{bc}\left(\partial_ag_{cb}+\partial_bg_{ac}-\partial_cg_{ab}\right)$$If the metric is diagonal it is pretty easy to show in ##n##-dimensions that those are both the same as$$\frac{1}{2}\sum_{i=1}^{i=n}{g^{ii}\partial_ag_{ii}}$$Should I be trying to prove ##\Gamma_{ab}^b=\partial_a\ln{\sqrt g}\ ## for a non-diagonal metric too?

(Carroll has a similar exercise which is restricted to a diagonal metric. Perhaps he is just not so cruel!)
 
Physics news on Phys.org
Oops! After a refreshing nights sleep I remembered that ##\partial_ag=gg^{bc}\partial_ag_{bc}## and saw the light. So ##\Gamma_{ab}^b=\partial_a\ln{\sqrt g}## is true for any old metric.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top