I Contracted Christoffel symbols in terms determinant(?) of metric

George Keeling
Gold Member
Messages
181
Reaction score
41
TL;DR
Should I try to prove this with non-diagonal metric?
M. Blennow's book has problem 2.18:
Show that the contracted Christoffel symbols ##\Gamma_{ab}^b## can be written in terms of a partial derivative of the logarithm of the square root of the metric tensor $$\Gamma_{ab}^b=\partial_a\ln{\sqrt g}$$I think that means square root of the determinant of the metric tensor (and it does in the next question). I don't know how to take a square root of a tensor.

I start with $$\partial_a\ln{\sqrt g}=\frac{1}{2}\partial_a\ln{g}=\frac{1}{2}\frac{1}{g}\partial_ag=\frac{1}{2}g^{-1}\partial_ag$$and$$\Gamma_{ab}^b=\frac{1}{2}g^{bc}\left(\partial_ag_{cb}+\partial_bg_{ac}-\partial_cg_{ab}\right)$$If the metric is diagonal it is pretty easy to show in ##n##-dimensions that those are both the same as$$\frac{1}{2}\sum_{i=1}^{i=n}{g^{ii}\partial_ag_{ii}}$$Should I be trying to prove ##\Gamma_{ab}^b=\partial_a\ln{\sqrt g}\ ## for a non-diagonal metric too?

(Carroll has a similar exercise which is restricted to a diagonal metric. Perhaps he is just not so cruel!)
 
Physics news on Phys.org
Oops! After a refreshing nights sleep I remembered that ##\partial_ag=gg^{bc}\partial_ag_{bc}## and saw the light. So ##\Gamma_{ab}^b=\partial_a\ln{\sqrt g}## is true for any old metric.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...