I Contracted Christoffel symbols in terms determinant(?) of metric

George Keeling
Gold Member
Messages
181
Reaction score
41
TL;DR Summary
Should I try to prove this with non-diagonal metric?
M. Blennow's book has problem 2.18:
Show that the contracted Christoffel symbols ##\Gamma_{ab}^b## can be written in terms of a partial derivative of the logarithm of the square root of the metric tensor $$\Gamma_{ab}^b=\partial_a\ln{\sqrt g}$$I think that means square root of the determinant of the metric tensor (and it does in the next question). I don't know how to take a square root of a tensor.

I start with $$\partial_a\ln{\sqrt g}=\frac{1}{2}\partial_a\ln{g}=\frac{1}{2}\frac{1}{g}\partial_ag=\frac{1}{2}g^{-1}\partial_ag$$and$$\Gamma_{ab}^b=\frac{1}{2}g^{bc}\left(\partial_ag_{cb}+\partial_bg_{ac}-\partial_cg_{ab}\right)$$If the metric is diagonal it is pretty easy to show in ##n##-dimensions that those are both the same as$$\frac{1}{2}\sum_{i=1}^{i=n}{g^{ii}\partial_ag_{ii}}$$Should I be trying to prove ##\Gamma_{ab}^b=\partial_a\ln{\sqrt g}\ ## for a non-diagonal metric too?

(Carroll has a similar exercise which is restricted to a diagonal metric. Perhaps he is just not so cruel!)
 
Physics news on Phys.org
Oops! After a refreshing nights sleep I remembered that ##\partial_ag=gg^{bc}\partial_ag_{bc}## and saw the light. So ##\Gamma_{ab}^b=\partial_a\ln{\sqrt g}## is true for any old metric.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top