MHB Contrapositive Proof: Ints $m$ & $n$ - Even/Odd Combinations

tmt1
Messages
230
Reaction score
0
For all integers $m$ and $n$, if $m+ n$ is even then $m$ and $n$ are both even or both odd.

For a contrapositive proof, I need to show that for all ints $m$ and $n$ if $m$ and $n$ and not both even and not both odd, then $ m + n $ is not even.

How do I go about doing this?
 
Mathematics news on Phys.org
The negation of the conclusion is that exactly ONE of $m,n$ is odd.

In a proof of this type, you may assume $m$ is even, and $n$ is odd (or else we may "switch them").

Your mission, should you decide to accept it, is to prove that in this case, we have the negation of the premise:

that is, to show that $m+n$ is thus odd.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
2K
Replies
11
Views
2K
Replies
28
Views
5K
Replies
1
Views
1K
Replies
3
Views
1K
Replies
5
Views
2K
Replies
9
Views
11K
Replies
5
Views
2K
Back
Top