bincy
- 38
- 0
Dear friends,
[math] \sum_{x=1}^{\infty}\frac{1}{x}[/math] diverges.
But [math] \sum_{x=1}^{\infty}\frac{1}{x^{2}}=\frac{\pi^{2}}{6}[/math]
How can we prove that [math] \sum_{x=1}^{\infty}\left(\frac{1}{x^{\left(1+epsilon\right)}}\right)[/math] converges to a finite value?
Thanks in advance.
Bincy.
[math] \sum_{x=1}^{\infty}\frac{1}{x}[/math] diverges.
But [math] \sum_{x=1}^{\infty}\frac{1}{x^{2}}=\frac{\pi^{2}}{6}[/math]
How can we prove that [math] \sum_{x=1}^{\infty}\left(\frac{1}{x^{\left(1+epsilon\right)}}\right)[/math] converges to a finite value?
Thanks in advance.
Bincy.