Convergence of integral for $0 \le a <1$

  • Context: MHB 
  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Convergence Integral
Click For Summary
SUMMARY

The integral $\displaystyle \int_{0}^{\infty} \Big( \frac{x^{a-1}}{\sinh x} - x^{a-2} \Big) \ dx$ converges for the range $0 \le a < 1$. The analysis utilizes the series expansion of $\frac{1}{\sinh x}$, leading to the simplification $\frac{x^{a-1}}{\sinh x} - x^{a-2} \sim - \frac{x^{a}}{6}$ as $x \to 0$ and $\sim - x^{a-2}$ as $x \to \infty$. The convergence is confirmed by evaluating the behavior of the integral at both limits, establishing that it converges for $-1 < a < 1$.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with series expansions, specifically for hyperbolic functions
  • Knowledge of convergence criteria for improper integrals
  • Basic experience with asymptotic analysis
NEXT STEPS
  • Study the series expansion of hyperbolic functions, focusing on $\sinh x$
  • Learn about convergence tests for improper integrals
  • Explore asymptotic behavior of functions near singularities
  • Investigate the implications of integral convergence in mathematical analysis
USEFUL FOR

Mathematicians, students of calculus, and researchers in mathematical analysis focusing on integral convergence and asymptotic behavior.

polygamma
Messages
227
Reaction score
0
How do you show that $\displaystyle \int_{0}^{\infty} \Big( \frac{x^{a-1}}{\sinh x} - x^{a-2} \Big) \ dx $ converges for $0 \le a <1$?
 
Last edited:
Physics news on Phys.org
Random Variable said:
How do you show that $\displaystyle \int_{0}^{\infty} \Big( \frac{x^{a-1}}{\sinh x} - x^{a-2} \Big) \ dx $ converges for $0 \le a <1$?

Remembering that ...

$\displaystyle \frac{1}{\sinh x} = \frac{1}{x} - \frac{x}{6} + \frac{7}{360}\ x^{2} - ...$ (1)

... You derive that is...

$\displaystyle \frac{x^{a-1}}{\sinh x} - x^{a-2} = x^{a-2}\ (1 - \frac{x^{2}}{6} + \frac{7}{360}\ x^{4} + ... -1) = - x^{a}\ (\frac{1}{6} - \frac{7}{360}\ x^{2} + ...)$ (2)

... so that the function around x=0 is $\displaystyle \sim - \frac{x^{a}}{6}$. For 'large x' the function is $\displaystyle \sim - x^{a-2}$ so that, combining the two conditions, the integral should converge for $-1 < a < 1$...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K