MHB Convergence of integral for $0 \le a <1$

Click For Summary
The integral $\displaystyle \int_{0}^{\infty} \Big( \frac{x^{a-1}}{\sinh x} - x^{a-2} \Big) \ dx$ converges for $0 \le a < 1$ by analyzing its behavior near zero and at infinity. Near zero, the function behaves like $-\frac{x^{a}}{6}$, indicating convergence for $a > -1$. For large values of $x$, the function approximates $-x^{a-2}$, which converges for $a < 1$. Thus, the combined conditions confirm convergence for the range $-1 < a < 1$. The analysis effectively demonstrates the convergence of the integral within the specified limits.
polygamma
Messages
227
Reaction score
0
How do you show that $\displaystyle \int_{0}^{\infty} \Big( \frac{x^{a-1}}{\sinh x} - x^{a-2} \Big) \ dx $ converges for $0 \le a <1$?
 
Last edited:
Physics news on Phys.org
Random Variable said:
How do you show that $\displaystyle \int_{0}^{\infty} \Big( \frac{x^{a-1}}{\sinh x} - x^{a-2} \Big) \ dx $ converges for $0 \le a <1$?

Remembering that ...

$\displaystyle \frac{1}{\sinh x} = \frac{1}{x} - \frac{x}{6} + \frac{7}{360}\ x^{2} - ...$ (1)

... You derive that is...

$\displaystyle \frac{x^{a-1}}{\sinh x} - x^{a-2} = x^{a-2}\ (1 - \frac{x^{2}}{6} + \frac{7}{360}\ x^{4} + ... -1) = - x^{a}\ (\frac{1}{6} - \frac{7}{360}\ x^{2} + ...)$ (2)

... so that the function around x=0 is $\displaystyle \sim - \frac{x^{a}}{6}$. For 'large x' the function is $\displaystyle \sim - x^{a-2}$ so that, combining the two conditions, the integral should converge for $-1 < a < 1$...

Kind regards

$\chi$ $\sigma$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K