It is perfectly fine to do the following:(adsbygoogle = window.adsbygoogle || []).push({});

##\displaystyle{\int_{-\infty}^{\infty}\ d\phi\ e^{-\phi^{2}/2}e^{-\lambda \phi^{4}/4!} = \int_{-\infty}^{\infty}e^{-\phi^{2}/2}\sum\limits_{n=0}^{\infty}}\frac{(-\lambda\phi^{4})^{n}}{(4!)^{n}\ n!}=\sum\limits_{n=0}^{\infty}\frac{(-1)^{n}\lambda^{n}}{(4!)^{n}n!}\int_{-\infty}^{\infty}e^{-\phi^{2}/2}\phi^{4n}##

and then to continue with the integration, but the following is not valid:

##\displaystyle{\int_{-\infty}^{\infty}\ d\phi\ e^{-\phi^{2}/2}\ \phi^{4n}=\int^{\infty}_{-\infty}d\phi\ \phi^{4n}\ \sum\limits_{m=0}^{\infty} \frac{(-1)^{m}\ \phi^{2m}}{2^{m}\ m!} = \sum\limits_{m=0}^{\infty} \frac{(-1)^{m}}{2^{m}\ m!} \int^{\infty}_{-\infty}d\phi\ \phi^{4n+2m}}##

The reason is that the integral after the Taylor expansion is not convergent, but it would be helpful if you could provide details.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Convergence properties of integrals

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**