MHB Convert r=7cos(theta) into a rectangular equation

Click For Summary
The polar equation r = 7cos(θ) can be converted into a rectangular equation by using the relationships between polar and rectangular coordinates. Starting with r = 6(cos(θ)), we substitute cos(θ) with x/r, leading to the equation r^2 = 6x. By substituting r^2 with x^2 + y^2, we arrive at x^2 + y^2 = 6x. Rearranging this into standard form, we complete the square to find that the equation represents a circle with a radius of 3 units, centered at the point (3, 0). This conversion illustrates the relationship between polar coordinates and their rectangular counterparts effectively.
Elissa89
Messages
52
Reaction score
0
So we're learning to plot polar equations, which easy enough. But I got a question in the homework that wasn't covered in class:

Convert r=7cos(theta) into a rectangular equation. Use x and y values. I know how to convert when it's x=r*cos(theta) or y=r*sin(theta) and r and theta is given. But this is different and I don't know how to do it.
 
Mathematics news on Phys.org
Okay, we are given the polar equation:

$$r=6\cos(\theta)$$

Now, from:

$$x=r\cos(\theta)\implies \cos(\theta)=\frac{x}{r}$$

We may write:

$$r=6\left(\frac{x}{r}\right)$$

Multiply through by \(r\):

$$r^2=6x$$

We know:

$$r^2=x^2+y^2$$

Hence, we have:

$$x^2+y^2=6x$$

This would technically suffice, but I would prefer to continue and put into standard form:

$$x^2-6x+y^2=0$$

Complete the square on \(x\):

$$(x-6x+9)+y^2=9$$

$$(x-3)^2+y^2=3^2$$

Now it's easy to see we have a circle of radius 3 units centered at (3,0).
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
999
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
4K
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K