Hi, I have a question about a certain step in the following problem/derivation, which you'll see in square brackets:(adsbygoogle = window.adsbygoogle || []).push({});

Show that T * ([tex]\partial[/tex]/ [tex]\partial[/tex]T) = (-1/T) * ([tex]\partial[/tex]/ [tex]\partial[/tex](1/T))

["[tex]\partial[/tex]/[tex]\partial[/tex]T" is the operator that takes the partial derivative of something with respect to T]

Showing that this is true is a little tricky. For example, we can define F = 1/T. Then ([tex]\partial[/tex]F/ [tex]\partial[/tex]T) = -1/T^2 and ([tex]\partial[/tex]F/ [tex]\partial[/tex]F) = 1. So we can write

([tex]\partial[/tex]F/ [tex]\partial[/tex]T) = (-1/T^2) ([tex]\partial[/tex]F/ [tex]\partial[/tex]F).

[In the next step he drops the F, so it's now an operator for an arbitrary function, but still with respect to F… Is this really okay?]

([tex]\partial[/tex]/ [tex]\partial[/tex]T) = (-1/T^2)([tex]\partial[/tex]/ [tex]\partial[/tex]F)

= (-1/T^2) ([tex]\partial[/tex]/ [tex]\partial[/tex](1/T)).

Multiplying by T, T([tex]\partial[/tex]/ [tex]\partial[/tex]T) = (-1/T)([tex]\partial[/tex]/ [tex]\partial[/tex](1/T)) and we're done.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Converting partial derivative w.r.t. T to partial derivative w.r.t. 1/T

**Physics Forums | Science Articles, Homework Help, Discussion**