Graduate Converting this vector into polar form

Click For Summary
SUMMARY

The discussion focuses on converting the surface velocity of a moving spherical particle into polar form, as described in the paper by the authors. The surface velocity is expressed as a function of the polar angle theta, leading to the equation $$\textbf{v}_s(\theta) = B_1 [\sin(\theta) + {\alpha\over{2}} \sin(2\theta)] \hat{\theta}$$. The participants confirm that the radial component of the fluid velocity at the particle surface is zero, reinforcing the understanding of the polar coordinate transformation. The derivation involves the Legendre polynomials and their derivatives, specifically $$P_1'$$ and $$P_2'$$, to arrive at the final expression.

PREREQUISITES
  • Understanding of spherical coordinates and polar transformations
  • Familiarity with Legendre polynomials and their derivatives
  • Knowledge of vector calculus, particularly in fluid dynamics
  • Basic principles of particle motion in a fluid medium
NEXT STEPS
  • Study the properties and applications of Legendre polynomials in physics
  • Learn about vector calculus in fluid dynamics, focusing on surface velocity concepts
  • Explore polar coordinate transformations in greater detail
  • Investigate the implications of zero radial velocity in fluid-particle interactions
USEFUL FOR

Researchers, physicists, and engineers working in fluid dynamics, particularly those focused on particle motion and surface interactions in fluids.

Rodger125
Messages
3
Reaction score
0
TL;DR
I'd like to convert this surface velocity vector into the form I described. It might be just a matter of converting it into polar coords
In the following paper, the surface velocity for a moving, spherical particle is given as (eq 1):

$$\textbf{v}_s(\hat{\textbf{r}}) = \sum {2\over{{n(n+1)}}} B_n (\hat{\textbf{e}} \cdot \hat{\textbf{r}} \hat{\textbf{r}} - \hat{\textbf{e}}) P_n'( \hat{\textbf{e}} \cdot \hat{\textbf{r}})$$

where ##\hat{\textbf{r}}## is the preferred swimming axis (we consider that the sphere carries with it a fixed coordinate system that determines its preferred moving direction at each instant). ##\hat{\textbf{r}}## is a unit vector from the particle center to a point on the surface, we have the Legendre polynomials with $$P_n'$$ being the derivative of the n-th order Legendre polynomial, and $$B_n$$ is the amplitude of the corresponding mode.

They then (up to N=2) write the following expression for the surface tangential velocity, as a function of theta
$$\textbf{v}_s(\theta) = B_1 [sin(\theta) + {\alpha\over{2}} sin(2\theta)] \hat{\theta}$$
where $$\beta = B_2 / B_1$$.

How does one arrive at the second equation? Do you convert the first vector into polar coordinates? If so, how do you do this?

Thank you
 
Last edited by a moderator:
Mathematics news on Phys.org
I do not go into the mathematics but I am convinced that velocity of fluid at particle surface has no radial component. In fact
\mathbf{\hat{r}} \cdot \textbf{v}_s(\hat{\textbf{r}}) = \sum {2\over{{n(n+1)}}} B_n (\mathbf{\hat{r}}\cdot (\hat{\textbf{e}}\cdot \hat{\textbf{r}}) \hat{\textbf{r}} - \mathbf{\hat{r}}\cdot\hat{\textbf{e}}) P_n'( \hat{\textbf{e}} \cdot \hat{\textbf{r}}) =0
where
\mathbf{\hat{r}}\cdot \mathbf{\hat{r}}=1
 
Last edited:
anuttarasammyak said:
I do not go into the mathematics but I am convinced that velocity of fluid at particle surface has no radial component. In fact
\mathbf{\hat{r}} \cdot \textbf{v}_s(\hat{\textbf{r}}) = \sum {2\over{{n(n+1)}}} B_n (\mathbf{\hat{r}}\cdot (\hat{\textbf{e}}\cdot \hat{\textbf{r}}) \hat{\textbf{r}} - \mathbf{\hat{r}}\cdot\hat{\textbf{e}}) P_n'( \hat{\textbf{e}} \cdot \hat{\textbf{r}}) =0
where
\mathbf{\hat{r}}\cdot \mathbf{\hat{r}}=1
That would make sense, I think. If we have a coordinate system moving with the sphere, and the sphere does not change in radius, surely the radial velocity would be zero
 
Rodger125 said:
How does one arrive at the second equation? Do you convert the first vector into polar coordinates? If so, how do you do this?
The authors describe the polar angle as
$$
\hat r \cdot \hat e = \cos(\theta)
$$
Therefore taking the sum,
$$
\mathbf u^s (\hat r)=B_1(\cos(\theta)\hat r - \hat e)P_1^{'}(\cos(\theta))
$$
$$
+ \frac{1}{3} B_2(\cos(\theta)\hat r - \hat e)P_1^{'}(\cos(\theta))
$$
with
$$
P_1^{'}(\cos(\theta))=-\sin(\theta)
$$
$$
P_2^{'}(\cos(\theta))=-\frac{3}{2}\sin(2\theta)
$$
The sum becomes,
$$
-B_1(\cos(\theta)\hat r -\hat e)\sin(\theta) - \frac{1}{2} B_2(\cos(\theta)\hat r -\hat e)\sin(2\theta)
$$
The result follows if
$$
\cos(\theta)\hat r -\hat e=-\hat \theta
$$
 
Fred Wright said:
The authors describe the polar angle as
$$
\hat r \cdot \hat e = \cos(\theta)
$$
Therefore taking the sum,
$$
\mathbf u^s (\hat r)=B_1(\cos(\theta)\hat r - \hat e)P_1^{'}(\cos(\theta))
$$
$$
+ \frac{1}{3} B_2(\cos(\theta)\hat r - \hat e)P_1^{'}(\cos(\theta))
$$
with
$$
P_1^{'}(\cos(\theta))=-\sin(\theta)
$$
$$
P_2^{'}(\cos(\theta))=-\frac{3}{2}\sin(2\theta)
$$
The sum becomes,
$$
-B_1(\cos(\theta)\hat r -\hat e)\sin(\theta) - \frac{1}{2} B_2(\cos(\theta)\hat r -\hat e)\sin(2\theta)
$$
The result follows if
$$
\cos(\theta)\hat r -\hat e=-\hat \theta
$$
Thank you!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
8K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 11 ·
Replies
11
Views
8K
  • · Replies 9 ·
Replies
9
Views
7K