Coordinate transformation into a standard flat metric

Click For Summary

Homework Help Overview

The discussion revolves around a coordinate transformation from a metric expressed in terms of variables \(T\) and \(X\) to a standard flat metric in terms of \(t\) and \(x\). The original metric is given as \(ds^2 = -X^2 dT^2 + dX^2\), and participants are exploring methods to achieve this transformation.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the use of the chain rule to express differentials and match coefficients in the metric. There is mention of finding transformations through guesswork and checking, as well as exploring the implications of null geodesics in the context of the transformation.

Discussion Status

Some participants have made progress in identifying transformations, while others are questioning the clarity and efficiency of their approaches. There is an ongoing exploration of the relationships between the variables and the conditions that must be satisfied for the transformation to hold.

Contextual Notes

One participant notes that the problem is not an actual homework problem but rather an example from a textbook, which may influence the expectations and approaches taken in the discussion.

offscene
Messages
7
Reaction score
2
Homework Statement
Starting from the metric ##ds^2=-X^2dT^2+dX^2##, using a coordinate transformation of T and X to t and x, convert it to the form ds^2=-dt^2+dx^2 (standard flat 2D metric).
Relevant Equations
Not actually a homework problem ("confession" from example 7.3 in Hartle's book for Gravity and GR) and no other relevant equations I can think of besides the standard chain rule but thought that this was the most fitting place to ask.
I started by expanding ##dx## and ##dt## using chain rule:

$$dt = \frac{dt}{dX}dX+\frac{dt}{dT}dT$$
$$dx = \frac{dx}{dX}dX+\frac{dx}{dT}dT$$

and then expressing ##ds^2## as such:

$$ds^2 = \left(\left(\frac{dt}{dX}\right)^2+\left(\frac{dt}{dX}\right)^2\right)dX^2+\left(\left(\frac{dt}{dT}\right)^2+\left(\frac{dt}{dT}\right)^2\right)dT^2 + 2\left(\frac{dt}{dX}\frac{dt}{dT}+\frac{dx}{dT}\frac{dx}{dX}\right)$$

But after matching the coefficients to the original ##ds^2##, I am unable to solve the equations to come up with the right transformation and was wondering if anyone could point me in the right direction/show me.
 
Physics news on Phys.org
Nevermind, I found the transformation with ##x = X\cosh(T)## and ##t = X\sinh(T)## with some guess and check but is there a cleaner way to do this?
 
  • Like
Likes   Reactions: vanhees71 and PeroK
The null geodesics in the usual Minkowski coordinates are given by ##x\pm t = const##. You can find them in the given coordinates and use that to set the coordinate change that matches them. In your case the null curves are given by ##dX^2=X^2dT^2##, which can be solved easily and gives ##Xe^{\pm T} = const## (you don't have to check that these are geodesics, if the change of variables works). So setting ##x+t = Xe^T## and ##x-t = Xe^{-T}## gives you the ones you found.
 
  • Like
Likes   Reactions: offscene and TSny
offscene said:
Homework Statement:: Starting from the metric ##ds^2=-X^2dT^2+dX^2##, using a coordinate transformation of T and X to t and x, convert it to the form ds^2=-dt^2+dx^2 (standard flat 2D metric).
Relevant Equations:: Not actually a homework problem ("confession" from example 7.3 in Hartle's book for Gravity and GR) and no other relevant equations I can think of besides the standard chain rule but thought that this was the most fitting place to ask.

I started by expanding ##dx## and ##dt## using chain rule:

But after matching the coefficients to the original ##ds^2##, I am unable to solve the equations to come up with the right transformation and was wondering if anyone could point me in the right direction/show me.

Using the chain rule in ds^2 = -dt^2 + dx^2 = -X^2 dT^2 + dX^2 you should find <br /> \begin{split}<br /> \left(\frac{\partial x}{\partial X}\right)^2 - \left(\frac{\partial t}{\partial X}\right)^2 &amp;= 1 \\<br /> \left(\frac{\partial t}{\partial T}\right)^2 - \left(\frac{\partial x}{\partial T}\right)^2 &amp;= X^2 \\<br /> \frac{\partial t}{\partial X}\frac{\partial t}{\partial T} - \frac{\partial x}{\partial T}\frac{\partial x}{\partial X} &amp;= 0\end{split} Now the first two equations are satisfied by setting <br /> \begin{split}<br /> \frac{\partial x}{\partial X} = \cosh \zeta \quad \frac{\partial t}{\partial X} &amp;= \sinh \zeta \\<br /> \frac{\partial t}{\partial T} = X\cosh \eta \quad \frac{\partial x}{\partial T} &amp;= X\sinh \eta \end{split}<br /> due to the identify \cosh^2 u - \sinh^2 u = 1. At present \eta and \zeta are unknown functions of X and T, but the third equation gives <br /> X (\sinh \zeta \cosh \eta - \cosh \zeta \sinh \eta) = X \sinh(\zeta - \eta) = 0 so that \zeta = \eta. The problem is now reduced to finding \eta. We can either find by inspection that \eta = T will work, or we can use equality of mixed partials to find that <br /> \begin{split}<br /> \frac{\partial^2 t}{\partial X\,\partial T} - \frac{\partial^2 t}{\partial T\,\partial X} = <br /> \left(1 - \frac{\partial \eta}{\partial T}\right) \sinh \eta + X\frac{\partial \eta}{\partial X} \cosh \eta &amp;= 0 \\<br /> \frac{\partial^2 x}{\partial X\,\partial T} - \frac{\partial^2 x}{\partial T\,\partial X} = <br /> \left(1 - \frac{\partial \eta}{\partial T}\right) \cosh \eta + X\frac{\partial \eta}{\partial X} \sinh \eta &amp;= 0<br /> \end{split} and solving for the partial derivatives we find <br /> 1 - \frac{\partial \eta}{\partial T} = 0 = X\frac{\partial \eta}{\partial X}.
 
  • Like
Likes   Reactions: offscene

Similar threads

Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 46 ·
2
Replies
46
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 11 ·
Replies
11
Views
4K