Physicsissuef
- 908
- 0
Homework Statement
Let's say that V is the vector space of all antisymmetric 3x3 matrices. Find the coordinates of the matrix A=\begin{bmatrix}<br /> 0 & 1 & -2\\ <br /> -1 & 0 & -3\\ <br /> 2 & 3 & 0<br /> \end{bmatrix} in ratio with the base:
E_1=\begin{bmatrix}<br /> 0 & 1 & 1\\ <br /> -1 & 0 & 0\\ <br /> -1 & 0 & 0<br /> \end{bmatrix}
E_2=\begin{bmatrix}<br /> 0 & 0 & 1\\ <br /> 0 & 0 & 1\\ <br /> -1 & -1 & 0<br /> \end{bmatrix}
E_3=\begin{bmatrix}<br /> 0 & -1 & 0\\ <br /> 1 & 0 & -1\\ <br /> 0 & 1 & 0<br /> \end{bmatrix}
Homework Equations
antisymetric matrix is only if A^t=-A[/tex]<br /> <br /> <h2>The Attempt at a Solution</h2><br /> <br /> The matrix is equal to:<br /> <br /> f: \mathbb{R}^3 \rightarrow \mathbb{R}^3 , f(x_1,x_2,x_3)=(x_2-2x_3,-x_1-3x_3,2x_1+3x_2)<br /> <br /> The base is B={(x_2+x_3,-x_1,-x_1) ; (x_3,x_3,-x_1-x_2) ; (-x_2,x_1-x_3,x_2)}<br /> <br /> What should I do now?