MHB Corollary to Correspondence Theorem for Modules

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Modules Theorem
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Joseph J. Rotman's book: Advanced Modern Algebra and I am currently focused on Section 6.1 Modules ...

I need some help with the proof of Corollary 6.25 ... Corollary to Theorem 6.22 (Correspondence Theorem) ... ...

Corollary 6.25 and its proof read as follows:View attachment 4925Can someone explain to me exactly how Corollary 6.25 follows from the Correspondence Theorem for Modules ...?

Hope that someone can help ...

Peter=============================================

*** EDIT ***

The above post refers to the Correspondence Theorem for Modules (Theorem 6.22 in Rotman's Advanced Modern Algebra) ... so I am proving the text of the Theorem from Rotman's Advanced Modern Algebra as follows:View attachment 4926
 
Physics news on Phys.org
Hint: when $R$ itself is considered as a (left) $R$-module, the submodules of $R$ are precisely the (left) ideals of $R$.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
1K