MHB Corollary to Correspondence Theorem for Modules

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Modules Theorem
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Joseph J. Rotman's book: Advanced Modern Algebra and I am currently focused on Section 6.1 Modules ...

I need some help with the proof of Corollary 6.25 ... Corollary to Theorem 6.22 (Correspondence Theorem) ... ...

Corollary 6.25 and its proof read as follows:View attachment 4925Can someone explain to me exactly how Corollary 6.25 follows from the Correspondence Theorem for Modules ...?

Hope that someone can help ...

Peter=============================================

*** EDIT ***

The above post refers to the Correspondence Theorem for Modules (Theorem 6.22 in Rotman's Advanced Modern Algebra) ... so I am proving the text of the Theorem from Rotman's Advanced Modern Algebra as follows:View attachment 4926
 
Physics news on Phys.org
Hint: when $R$ itself is considered as a (left) $R$-module, the submodules of $R$ are precisely the (left) ideals of $R$.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...