Correct option for n dependence of free energy f per unit

  • Thread starter pallab
  • Start date
  • #1
27
2

Homework Statement


The equation of state of an ideal gas is p = nkT, where p is the thermodynamic
pressure and n = N / V is the thermodynamic variable for the number of particles per
unit volume. The n dependence of the free energy f per unit volume of the ideal gas is
obtained by the following expression , where c is temperature-dependent constant k is boltzmann constant.
(a) nkT[In(n)+c]
(b) 2nkT[n ln(n)+c.]
(c) 3/2 nkT
(d) 3nkT

Homework Equations


∂f/∂n=μ
pV=NkT
p=NkT/V

The Attempt at a Solution


internal energy U=U(S,V,N)
∴μ=∂U/∂N
and ∂μ/∂V=∂2U/∂N∂V= -∂p/∂N
∂μ/∂V=-kT/V
∴μ=-kTlnV+c
 

Answers and Replies

  • #2
185
4
If you know these are free particles (i.e. potential energy term in the Hamiltonian is 0) then the best start would be to calculate the N particle partition function, it's usually called Z or QN. Once you have the partition function, the Helmholtz free energy is given by: A(N,T,V) = -kTln(Z). You can then use the laws of logarithms as well as the Stirling Approximation (to estimate the term ln(N!)).
 
  • Like
Likes pallab
  • #3
27
2
If you know these are free particles (i.e. potential energy term in the Hamiltonian is 0) then the best start would be to calculate the N particle partition function, it's usually called Z or QN. Once you have the partition function, the Helmholtz free energy is given by: A(N,T,V) = -kTln(Z). You can then use the laws of logarithms as well as the Stirling Approximation (to estimate the term ln(N!)).
thank you.
 

Related Threads on Correct option for n dependence of free energy f per unit

Replies
3
Views
2K
Replies
2
Views
3K
Replies
19
Views
2K
Replies
1
Views
6K
  • Last Post
Replies
1
Views
726
Replies
1
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
2
Views
710
Top