elias001
- 360
- 24
- TL;DR Summary
- I would like to know if my calculations for the state row entries for ##\{q_0,q_1,q_2,q_3,q_4,q_5\}## are correct.
The two screenshots below is taken from the text Arrows, Structures, and functiors The categorical Imperative By: Arbib and manes, pp 93-94
page 1
page 2
In the above two screenshots, I would like to fill out the last state row entries: ##q_0,q_1,q_2,q_3,q_4##
Let ##t=\{0,1,2,3,4,5\}, Y=D=\{0,1,2,3,4,5,6,7,8,9\}, Q=\{0,1\}\times D##
##q_t=q(t)=(c,cd)=(c,d), c\in \{0,1\}, cd=10c+d, q_t: cd\mapsto d\in D##
##\beta:\{0,1\}\times D\to D:cd\mapsto d##
##\delta:\{0,1\}\times D\times D\times D\to \{0,1\}\times D:(cd,x_1,x_2)\mapsto c'd'=c+x_1+x_2##
where ##x_1## denotes ##1##st input, and ##x_2## denotes ##2##nd input. For the ##\delta## map, we can let ##c'_{t+1}d_t'=c+x_{t1}+x_{t2},## where ##x_1=x_{t1}, x_2=x_{t2},##
Instead of ##c'##, we also can let ##c'=c'_{t+1}## and ##c_t=c\in \{0,1\}, c_{t+1}=1 \text{ if } c_t+x_{t1}+x_{t2}\geq 10, \text{ otherwise } c_{t+1}=0, \text{ also we let } d'=d_t.##
Then for:
##t=0, q_0=q(0)=(0,0,0),## so ##c_1=0, d_1=0, x_{01}=0, x_{02}=0, q_0=(0,0),##
##t=1, q_1=q(1)=(0,2,1)=(0,2+1), 0+2+4=3<10.## So ##c'_2=0,d'_1=3, x_{11}=2, x_{12}=1, q_1=(0,3),##
##t=2, q_2=q(2)=(0,7,4)=(0,7+4), 0+7+4=11>10.## So ##c'_3=1,d'_2=11-10=1, x_{21}=7, x_{22}=4,q_2=(0,1),##
##t=3, q_3=q(3)=(1,3,0)=(1,3+0), 1+3+0=4<10.## So ##c'_4=0,d'_2=4, x_{31}=3, x_{32}=0,q_3=(1,3),##
##t=4, q_4=q(4)=(0,0,0),## so ##c_5=0, d_4=0, x_{41}=0, x_{42}=0,q_4=(0,0),##
##t=5, q_5=q(5)=(0,0,0),## so ##c_6=0, d_5=0, x_{51}=0, x_{52}=0,q_5=(0,0).##
Thank you in advance
page 1
page 2
In the above two screenshots, I would like to fill out the last state row entries: ##q_0,q_1,q_2,q_3,q_4##
Let ##t=\{0,1,2,3,4,5\}, Y=D=\{0,1,2,3,4,5,6,7,8,9\}, Q=\{0,1\}\times D##
##q_t=q(t)=(c,cd)=(c,d), c\in \{0,1\}, cd=10c+d, q_t: cd\mapsto d\in D##
##\beta:\{0,1\}\times D\to D:cd\mapsto d##
##\delta:\{0,1\}\times D\times D\times D\to \{0,1\}\times D:(cd,x_1,x_2)\mapsto c'd'=c+x_1+x_2##
where ##x_1## denotes ##1##st input, and ##x_2## denotes ##2##nd input. For the ##\delta## map, we can let ##c'_{t+1}d_t'=c+x_{t1}+x_{t2},## where ##x_1=x_{t1}, x_2=x_{t2},##
Instead of ##c'##, we also can let ##c'=c'_{t+1}## and ##c_t=c\in \{0,1\}, c_{t+1}=1 \text{ if } c_t+x_{t1}+x_{t2}\geq 10, \text{ otherwise } c_{t+1}=0, \text{ also we let } d'=d_t.##
Then for:
##t=0, q_0=q(0)=(0,0,0),## so ##c_1=0, d_1=0, x_{01}=0, x_{02}=0, q_0=(0,0),##
##t=1, q_1=q(1)=(0,2,1)=(0,2+1), 0+2+4=3<10.## So ##c'_2=0,d'_1=3, x_{11}=2, x_{12}=1, q_1=(0,3),##
##t=2, q_2=q(2)=(0,7,4)=(0,7+4), 0+7+4=11>10.## So ##c'_3=1,d'_2=11-10=1, x_{21}=7, x_{22}=4,q_2=(0,1),##
##t=3, q_3=q(3)=(1,3,0)=(1,3+0), 1+3+0=4<10.## So ##c'_4=0,d'_2=4, x_{31}=3, x_{32}=0,q_3=(1,3),##
##t=4, q_4=q(4)=(0,0,0),## so ##c_5=0, d_4=0, x_{41}=0, x_{42}=0,q_4=(0,0),##
##t=5, q_5=q(5)=(0,0,0),## so ##c_6=0, d_5=0, x_{51}=0, x_{52}=0,q_5=(0,0).##
Thank you in advance
Attachments
-
Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-0.webp34.3 KB · Views: 17
-
Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-1.webp32.9 KB · Views: 10
-
Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-2.webp33.7 KB · Views: 9
-
Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-3.webp36.8 KB · Views: 14
-
Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-4.webp34.3 KB · Views: 9
-
Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-5.webp39.4 KB · Views: 23
-
Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-6.webp30.9 KB · Views: 11
-
Velleman 1.webp9.1 KB · Views: 11