I Correct state row entries in the following Sequential machine?

  • I
  • Thread starter Thread starter elias001
  • Start date Start date
elias001
Messages
360
Reaction score
24
TL;DR Summary
I would like to know if my calculations for the state row entries for ##\{q_0,q_1,q_2,q_3,q_4,q_5\}## are correct.
The two screenshots below is taken from the text Arrows, Structures, and functiors The categorical Imperative By: Arbib and manes, pp 93-94

page 1
sequential machine 1.webp


page 2
sequential machine 2.webp


In the above two screenshots, I would like to fill out the last state row entries: ##q_0,q_1,q_2,q_3,q_4##

Let ##t=\{0,1,2,3,4,5\}, Y=D=\{0,1,2,3,4,5,6,7,8,9\}, Q=\{0,1\}\times D##

##q_t=q(t)=(c,cd)=(c,d), c\in \{0,1\}, cd=10c+d, q_t: cd\mapsto d\in D##

##\beta:\{0,1\}\times D\to D:cd\mapsto d##

##\delta:\{0,1\}\times D\times D\times D\to \{0,1\}\times D:(cd,x_1,x_2)\mapsto c'd'=c+x_1+x_2##

where ##x_1## denotes ##1##st input, and ##x_2## denotes ##2##nd input. For the ##\delta## map, we can let ##c'_{t+1}d_t'=c+x_{t1}+x_{t2},## where ##x_1=x_{t1}, x_2=x_{t2},##

Instead of ##c'##, we also can let ##c'=c'_{t+1}## and ##c_t=c\in \{0,1\}, c_{t+1}=1 \text{ if } c_t+x_{t1}+x_{t2}\geq 10, \text{ otherwise } c_{t+1}=0, \text{ also we let } d'=d_t.##

Then for:

##t=0, q_0=q(0)=(0,0,0),## so ##c_1=0, d_1=0, x_{01}=0, x_{02}=0, q_0=(0,0),##

##t=1, q_1=q(1)=(0,2,1)=(0,2+1), 0+2+4=3<10.## So ##c'_2=0,d'_1=3, x_{11}=2, x_{12}=1, q_1=(0,3),##

##t=2, q_2=q(2)=(0,7,4)=(0,7+4), 0+7+4=11>10.## So ##c'_3=1,d'_2=11-10=1, x_{21}=7, x_{22}=4,q_2=(0,1),##

##t=3, q_3=q(3)=(1,3,0)=(1,3+0), 1+3+0=4<10.## So ##c'_4=0,d'_2=4, x_{31}=3, x_{32}=0,q_3=(1,3),##

##t=4, q_4=q(4)=(0,0,0),## so ##c_5=0, d_4=0, x_{41}=0, x_{42}=0,q_4=(0,0),##

##t=5, q_5=q(5)=(0,0,0),## so ##c_6=0, d_5=0, x_{51}=0, x_{52}=0,q_5=(0,0).##

Thank you in advance
 

Attachments

  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-0.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-0.webp
    34.3 KB · Views: 17
  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-1.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-1.webp
    32.9 KB · Views: 10
  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-2.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-2.webp
    33.7 KB · Views: 9
  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-3.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-3.webp
    36.8 KB · Views: 14
  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-4.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-4.webp
    34.3 KB · Views: 9
  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-5.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-5.webp
    39.4 KB · Views: 23
  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-6.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-6.webp
    30.9 KB · Views: 11
  • Velleman 1.webp
    Velleman 1.webp
    9.1 KB · Views: 11
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top