Undergrad Correct state row entries in the following Sequential machine?

  • Thread starter Thread starter elias001
  • Start date Start date
Click For Summary
The discussion focuses on filling out the last state row entries for a sequential machine based on provided equations and mappings. It outlines the definitions of state variables and the transition function, detailing how to compute the next state based on current inputs. The calculations for each time step from t=0 to t=5 are presented, showing how the values of c and d evolve through the transitions. Key results include the final states for each time step, demonstrating how the machine processes inputs to update its state. The thread emphasizes the importance of understanding the transition dynamics in sequential machines.
elias001
Messages
389
Reaction score
30
TL;DR
I would like to know if my calculations for the state row entries for ##\{q_0,q_1,q_2,q_3,q_4,q_5\}## are correct.
The two screenshots below is taken from the text Arrows, Structures, and functiors The categorical Imperative By: Arbib and manes, pp 93-94

page 1
sequential machine 1.webp


page 2
sequential machine 2.webp


In the above two screenshots, I would like to fill out the last state row entries: ##q_0,q_1,q_2,q_3,q_4##

Let ##t=\{0,1,2,3,4,5\}, Y=D=\{0,1,2,3,4,5,6,7,8,9\}, Q=\{0,1\}\times D##

##q_t=q(t)=(c,cd)=(c,d), c\in \{0,1\}, cd=10c+d, q_t: cd\mapsto d\in D##

##\beta:\{0,1\}\times D\to D:cd\mapsto d##

##\delta:\{0,1\}\times D\times D\times D\to \{0,1\}\times D:(cd,x_1,x_2)\mapsto c'd'=c+x_1+x_2##

where ##x_1## denotes ##1##st input, and ##x_2## denotes ##2##nd input. For the ##\delta## map, we can let ##c'_{t+1}d_t'=c+x_{t1}+x_{t2},## where ##x_1=x_{t1}, x_2=x_{t2},##

Instead of ##c'##, we also can let ##c'=c'_{t+1}## and ##c_t=c\in \{0,1\}, c_{t+1}=1 \text{ if } c_t+x_{t1}+x_{t2}\geq 10, \text{ otherwise } c_{t+1}=0, \text{ also we let } d'=d_t.##

Then for:

##t=0, q_0=q(0)=(0,0,0),## so ##c_1=0, d_1=0, x_{01}=0, x_{02}=0, q_0=(0,0),##

##t=1, q_1=q(1)=(0,2,1)=(0,2+1), 0+2+4=3<10.## So ##c'_2=0,d'_1=3, x_{11}=2, x_{12}=1, q_1=(0,3),##

##t=2, q_2=q(2)=(0,7,4)=(0,7+4), 0+7+4=11>10.## So ##c'_3=1,d'_2=11-10=1, x_{21}=7, x_{22}=4,q_2=(0,1),##

##t=3, q_3=q(3)=(1,3,0)=(1,3+0), 1+3+0=4<10.## So ##c'_4=0,d'_2=4, x_{31}=3, x_{32}=0,q_3=(1,3),##

##t=4, q_4=q(4)=(0,0,0),## so ##c_5=0, d_4=0, x_{41}=0, x_{42}=0,q_4=(0,0),##

##t=5, q_5=q(5)=(0,0,0),## so ##c_6=0, d_5=0, x_{51}=0, x_{52}=0,q_5=(0,0).##

Thank you in advance
 

Attachments

  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-0.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-0.webp
    34.3 KB · Views: 36
  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-1.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-1.webp
    32.9 KB · Views: 15
  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-2.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-2.webp
    33.7 KB · Views: 20
  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-3.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-3.webp
    36.8 KB · Views: 42
  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-4.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-4.webp
    34.3 KB · Views: 16
  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-5.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-5.webp
    39.4 KB · Views: 35
  • Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-6.webp
    Anthony W. Knapp-Advanced Algebra (2016) pp 264- 270-images-6.webp
    30.9 KB · Views: 30
  • Velleman 1.webp
    Velleman 1.webp
    9.1 KB · Views: 21
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 0 ·
Replies
0
Views
798
  • · Replies 4 ·
Replies
4
Views
2K
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 67 ·
3
Replies
67
Views
11K
Replies
7
Views
8K
  • · Replies 52 ·
2
Replies
52
Views
13K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K