Given the theory(adsbygoogle = window.adsbygoogle || []).push({});

$$\mathcal{L}=\frac{1}{2}(\partial_{\mu}\phi)^{2}-\frac{1}{2}m_{\phi}^{2}\phi^{2}+\partial_{\mu}\chi^{*}\partial^{\mu}\chi-m_{\chi}^{2}\chi^{*}\chi+\mathcal{L}_{\text{int}},\qquad \mathcal{L}_{\text{int}}=-g\phi\chi^{*}\chi,$$

the time-correlation function ##\langle \Omega | \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|\Omega\rangle## is given by

$$\langle \Omega | \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|\Omega\rangle = \langle 0| \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|0\rangle -ig \int d^{4}x\ \langle 0 | \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})\phi(x)\chi^{*}(x)\chi(x)|0\rangle + \mathcal{O}(g^{2})$$

---

Is ##\langle 0| \phi(x_{1})\chi^{*}(x_{2})\chi(x_{3})|0\rangle = 0##?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Correlation functions in an interacting theory

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**