MHB Cos (π/7) is a root to a cubic equation

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cos Cubic Root
Click For Summary
The discussion centers on proving that cos(π/7) is a root of the cubic equation 8x^3 - 4x^2 - 4x + 1 = 0. Participants share their solutions and corrections, with some acknowledging errors in their initial approaches. The use of specific mathematical identities is mentioned as part of the proof process. Overall, the conversation highlights collaborative problem-solving and the importance of accuracy in mathematical proofs. The focus remains on validating the root of the equation through rigorous proof techniques.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\cos \dfrac{\pi}{7}$ is a root of the equation $8x^3-4x^2-4x+1=0$.
 
Mathematics news on Phys.org
anemone said:
Prove that $\cos \dfrac{\pi}{7}$ is a root of the equation $8x^3-4x^2-4x+1=0$.

Let us put $x = \cos \frac{\pi}{7}$ and see if expression is zero
we have $8x^3-4x^2-4x+1=8\cos^3 \frac{\pi}{7} - 4 \cos^2 \frac{\pi}{7} + 4 \cos \frac{\pi}{7} + 1$
$= 2(4\cos^3 \frac{\pi}{7}) - 2 (2 \cos^2 \frac{\pi}{7}) - 4 \cos \frac{\pi}{7} + 1$
$= 2 (3 cos \frac{\pi}{7} + cos \frac{3\pi}{7}) - 2 ( cos \frac{2\pi}{7} + 1) + 4 \cos \frac{\pi}{7} + 1$ using $4cos^3 x = 3 \cos\, x + cos 3x$ and $2\cos^2x = cos 2x + 1$
$= 2(cos \frac{3\pi}{7} - cos \frac{2\pi}{7} + cos \frac{\pi}{7} + \frac{1}{2})$
$= 2(cos \frac{3\pi}{7} + cos \frac{5\pi}{7} + cos \frac{\pi}{7} + \frac{1}{2})$
$= 2(cos \frac{5\pi}{7} + cos \frac{3\pi}{7} + cos \frac{\pi}{7} + \frac{1}{2})$
$= 2(-\frac{1}{2} + \frac{1}{2})= 0$

Note: I have used $(cos \frac{5\pi}{7}) + cos \frac{3\pi}{7} + cos \frac{\pi}{7} = - \frac{1}{2}$ and I can prove it if required
 
Well done kaliprasad and thanks for participating!

kaliprasad said:
Note: I have used $(cos \frac{5\pi}{7}) + cos \frac{3\pi}{7} + cos \frac{\pi}{7} = - \frac{1}{2}$ and I can prove it if required

Yes, that is the trick I believe one has to use to crack this problem but I think the readers would appreciate it if you show how we obtained $\cos \frac{5\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{\pi}{7} = -\frac{1}{2}$...(Happy)
 
anemone said:
Prove that $\cos \dfrac{\pi}{7}$ is a root of the equation $8x^3-4x^2-4x+1=0$.

If you'll admit the identity $\cos\dfrac{\pi}{7}\cos\dfrac{2\pi}{7}\cos\dfrac{3\pi}{7}=\dfrac18$ then here is an alternative:

$$8x^3-4x^2-4x+1=0$$

$$4x(2x^2-1-x)=-1$$

$$4\cos\dfrac{\pi}{7}\left(\cos\dfrac{2\pi}{7}-\cos\dfrac{\pi}{7}\right)=-1$$

$$-8\cos\dfrac{\pi}{7}\sin\dfrac{3\pi}{14}\sin\dfrac{\pi}{14}=-1$$

$$-8\cos\dfrac{\pi}{7}\cos\dfrac{2\pi}{7}\cos\dfrac{3\pi}{7}=-1$$

$$-1=-1$$
 
kaliprasad said:
Let us put $x = \cos \frac{\pi}{7}$ and see if expression is zero
we have $8x^3-4x^2-4x+1=8\cos^3 \frac{\pi}{7} - 4 \cos^2 \frac{\pi}{7} + 4 \cos \frac{\pi}{7} + 1$
$= 2(4\cos^3 \frac{\pi}{7}) - 2 (2 \cos^2 \frac{\pi}{7}) - 4 \cos \frac{\pi}{7} + 1$
$= 2 (3 cos \frac{\pi}{7} + cos \frac{3\pi}{7}) - 2 ( cos \frac{2\pi}{7} + 1) + 4 \cos \frac{\pi}{7} + 1$ using $4cos^3 x = 3 \cos\, x + cos 3x$ and $2\cos^2x = cos 2x + 1$
$= 2(cos \frac{3\pi}{7} - cos \frac{2\pi}{7} + cos \frac{\pi}{7} + \frac{1}{2})$
$= 2(cos \frac{3\pi}{7} + cos \frac{5\pi}{7} + cos \frac{\pi}{7} + \frac{1}{2})$
$= 2(cos \frac{5\pi}{7} + cos \frac{3\pi}{7} + cos \frac{\pi}{7} + \frac{1}{2})$
$= 2(-\frac{1}{2} + \frac{1}{2})= 0$

Note: I have used $(cos \frac{5\pi}{7}) + cos \frac{3\pi}{7} + cos \frac{\pi}{7} = - \frac{1}{2}$ and I can prove it if required

Sorry : there were 2 serious errors . Now I correct the same

Let us put $x = \cos \frac{\pi}{7}$ and see if expression is zero
we have $8x^3-4x^2-4x+1=8\cos^3 \frac{\pi}{7} - 4 \cos^2 \frac{\pi}{7} + 4 \cos \frac{\pi}{7} + 1$
$= 2(4\cos^3 \frac{\pi}{7}) - 2 (2 \cos^2 \frac{\pi}{7}) - 4 \cos \frac{\pi}{7} + 1$
$= 2 (3 cos \frac{\pi}{7} + cos \frac{3\pi}{7}) - 2 ( cos \frac{2\pi}{7} + 1) + 4 \cos \frac{\pi}{7} + 1$ using $4cos^3 x = 3 \cos\, x + cos 3x$ and $2\cos^2x = cos 2x + 1$
$= 2(cos \frac{3\pi}{7} - cos \frac{2\pi}{7} + cos \frac{\pi}{7} - \frac{1}{2})$
$= 2(cos \frac{3\pi}{7} + cos \frac{5\pi}{7} + cos \frac{\pi}{7} - \frac{1}{2})$
$= 2(cos \frac{5\pi}{7} + cos \frac{3\pi}{7} + cos \frac{\pi}{7} - \frac{1}{2})$
$= 2(\frac{1}{2} - \frac{1}{2})= 0$

I had mentioned $(cos \frac{5\pi}{7}) + cos \frac{3\pi}{7} + cos \frac{\pi}{7} = - \frac{1}{2}$ but it should be
$(cos \frac{5\pi}{7}) + cos \frac{3\pi}{7} + cos \frac{\pi}{7} = \frac{1}{2}$

Now for the proof:
let $z = \cos \frac{\pi}{7} + i \sin \frac{\pi}{7}$
$z^7 = \cos \pi + i \sin \pi = - 1$
so $z^7+1 = 0$
($z+1) (z^6-z^5+z^4 - z^3+z^2 -z + 1) = 0$
as z is not - 1 so
$z^6-z^5+z^4 - z^3+z^2 -z + 1 = 0$
so $z^6-z^5+z^4 - z^3+z^2 -z= -1$
so $z+z^3+ z^5 = 1 + (z^2+z^4+z^6)$
equating the real part
$\cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7} = 1 + \cos \frac{2\pi}{7}+ \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7})$
but $\cos\frac{6\pi}{7}= - \cos(\pi-\frac{\pi}{7}) = - \cos \frac{\pi}{7}$
$\cos \frac{4\pi}{7}= - \cos \frac{3\pi}{7}$
$\cos \frac{2\pi}{7} = - \cos \frac{5\pi}{7}$
so $\cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7} = 1 - \cos \frac{2\pi}{7} - \cos \frac{4\pi}{7} - \cos \frac{6\pi}{7})$
so $2( cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7}) = 1$
or $2( cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7}) = \frac{1}{2}$
 
Hi greg1313! Your answer is great and thanks for participating!(Cool)

Hi kaliprasad, I admit that I didn't go through your whole solution and missed something obviously wrong. Sorry!

In this problem, I used the following identity for the proof:
$$\cos \dfrac{\pi}{7}-\cos \dfrac{2\pi}{7}+\cos \dfrac{3\pi}{7}=\frac{1}{2}.$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K