Cos (π/7) is a root to a cubic equation

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cos Cubic Root
Click For Summary
SUMMARY

The discussion confirms that $\cos \dfrac{\pi}{7}$ is a root of the cubic equation $8x^3-4x^2-4x+1=0$. Participants engaged in proving this identity, with contributions highlighting the importance of specific mathematical identities in the proof process. Errors were acknowledged and corrected, emphasizing the collaborative nature of the discussion. The equation's structure and the trigonometric identity used were central to the proof provided by the participants.

PREREQUISITES
  • Understanding of cubic equations and their roots
  • Familiarity with trigonometric identities
  • Knowledge of the cosine function and its properties
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the derivation of roots for cubic equations
  • Explore trigonometric identities related to cosine
  • Learn about polynomial equations and their solutions
  • Investigate the geometric interpretations of trigonometric functions
USEFUL FOR

Mathematics students, educators, and anyone interested in trigonometric equations and polynomial roots will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\cos \dfrac{\pi}{7}$ is a root of the equation $8x^3-4x^2-4x+1=0$.
 
Mathematics news on Phys.org
anemone said:
Prove that $\cos \dfrac{\pi}{7}$ is a root of the equation $8x^3-4x^2-4x+1=0$.

Let us put $x = \cos \frac{\pi}{7}$ and see if expression is zero
we have $8x^3-4x^2-4x+1=8\cos^3 \frac{\pi}{7} - 4 \cos^2 \frac{\pi}{7} + 4 \cos \frac{\pi}{7} + 1$
$= 2(4\cos^3 \frac{\pi}{7}) - 2 (2 \cos^2 \frac{\pi}{7}) - 4 \cos \frac{\pi}{7} + 1$
$= 2 (3 cos \frac{\pi}{7} + cos \frac{3\pi}{7}) - 2 ( cos \frac{2\pi}{7} + 1) + 4 \cos \frac{\pi}{7} + 1$ using $4cos^3 x = 3 \cos\, x + cos 3x$ and $2\cos^2x = cos 2x + 1$
$= 2(cos \frac{3\pi}{7} - cos \frac{2\pi}{7} + cos \frac{\pi}{7} + \frac{1}{2})$
$= 2(cos \frac{3\pi}{7} + cos \frac{5\pi}{7} + cos \frac{\pi}{7} + \frac{1}{2})$
$= 2(cos \frac{5\pi}{7} + cos \frac{3\pi}{7} + cos \frac{\pi}{7} + \frac{1}{2})$
$= 2(-\frac{1}{2} + \frac{1}{2})= 0$

Note: I have used $(cos \frac{5\pi}{7}) + cos \frac{3\pi}{7} + cos \frac{\pi}{7} = - \frac{1}{2}$ and I can prove it if required
 
Well done kaliprasad and thanks for participating!

kaliprasad said:
Note: I have used $(cos \frac{5\pi}{7}) + cos \frac{3\pi}{7} + cos \frac{\pi}{7} = - \frac{1}{2}$ and I can prove it if required

Yes, that is the trick I believe one has to use to crack this problem but I think the readers would appreciate it if you show how we obtained $\cos \frac{5\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{\pi}{7} = -\frac{1}{2}$...(Happy)
 
anemone said:
Prove that $\cos \dfrac{\pi}{7}$ is a root of the equation $8x^3-4x^2-4x+1=0$.

If you'll admit the identity $\cos\dfrac{\pi}{7}\cos\dfrac{2\pi}{7}\cos\dfrac{3\pi}{7}=\dfrac18$ then here is an alternative:

$$8x^3-4x^2-4x+1=0$$

$$4x(2x^2-1-x)=-1$$

$$4\cos\dfrac{\pi}{7}\left(\cos\dfrac{2\pi}{7}-\cos\dfrac{\pi}{7}\right)=-1$$

$$-8\cos\dfrac{\pi}{7}\sin\dfrac{3\pi}{14}\sin\dfrac{\pi}{14}=-1$$

$$-8\cos\dfrac{\pi}{7}\cos\dfrac{2\pi}{7}\cos\dfrac{3\pi}{7}=-1$$

$$-1=-1$$
 
kaliprasad said:
Let us put $x = \cos \frac{\pi}{7}$ and see if expression is zero
we have $8x^3-4x^2-4x+1=8\cos^3 \frac{\pi}{7} - 4 \cos^2 \frac{\pi}{7} + 4 \cos \frac{\pi}{7} + 1$
$= 2(4\cos^3 \frac{\pi}{7}) - 2 (2 \cos^2 \frac{\pi}{7}) - 4 \cos \frac{\pi}{7} + 1$
$= 2 (3 cos \frac{\pi}{7} + cos \frac{3\pi}{7}) - 2 ( cos \frac{2\pi}{7} + 1) + 4 \cos \frac{\pi}{7} + 1$ using $4cos^3 x = 3 \cos\, x + cos 3x$ and $2\cos^2x = cos 2x + 1$
$= 2(cos \frac{3\pi}{7} - cos \frac{2\pi}{7} + cos \frac{\pi}{7} + \frac{1}{2})$
$= 2(cos \frac{3\pi}{7} + cos \frac{5\pi}{7} + cos \frac{\pi}{7} + \frac{1}{2})$
$= 2(cos \frac{5\pi}{7} + cos \frac{3\pi}{7} + cos \frac{\pi}{7} + \frac{1}{2})$
$= 2(-\frac{1}{2} + \frac{1}{2})= 0$

Note: I have used $(cos \frac{5\pi}{7}) + cos \frac{3\pi}{7} + cos \frac{\pi}{7} = - \frac{1}{2}$ and I can prove it if required

Sorry : there were 2 serious errors . Now I correct the same

Let us put $x = \cos \frac{\pi}{7}$ and see if expression is zero
we have $8x^3-4x^2-4x+1=8\cos^3 \frac{\pi}{7} - 4 \cos^2 \frac{\pi}{7} + 4 \cos \frac{\pi}{7} + 1$
$= 2(4\cos^3 \frac{\pi}{7}) - 2 (2 \cos^2 \frac{\pi}{7}) - 4 \cos \frac{\pi}{7} + 1$
$= 2 (3 cos \frac{\pi}{7} + cos \frac{3\pi}{7}) - 2 ( cos \frac{2\pi}{7} + 1) + 4 \cos \frac{\pi}{7} + 1$ using $4cos^3 x = 3 \cos\, x + cos 3x$ and $2\cos^2x = cos 2x + 1$
$= 2(cos \frac{3\pi}{7} - cos \frac{2\pi}{7} + cos \frac{\pi}{7} - \frac{1}{2})$
$= 2(cos \frac{3\pi}{7} + cos \frac{5\pi}{7} + cos \frac{\pi}{7} - \frac{1}{2})$
$= 2(cos \frac{5\pi}{7} + cos \frac{3\pi}{7} + cos \frac{\pi}{7} - \frac{1}{2})$
$= 2(\frac{1}{2} - \frac{1}{2})= 0$

I had mentioned $(cos \frac{5\pi}{7}) + cos \frac{3\pi}{7} + cos \frac{\pi}{7} = - \frac{1}{2}$ but it should be
$(cos \frac{5\pi}{7}) + cos \frac{3\pi}{7} + cos \frac{\pi}{7} = \frac{1}{2}$

Now for the proof:
let $z = \cos \frac{\pi}{7} + i \sin \frac{\pi}{7}$
$z^7 = \cos \pi + i \sin \pi = - 1$
so $z^7+1 = 0$
($z+1) (z^6-z^5+z^4 - z^3+z^2 -z + 1) = 0$
as z is not - 1 so
$z^6-z^5+z^4 - z^3+z^2 -z + 1 = 0$
so $z^6-z^5+z^4 - z^3+z^2 -z= -1$
so $z+z^3+ z^5 = 1 + (z^2+z^4+z^6)$
equating the real part
$\cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7} = 1 + \cos \frac{2\pi}{7}+ \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7})$
but $\cos\frac{6\pi}{7}= - \cos(\pi-\frac{\pi}{7}) = - \cos \frac{\pi}{7}$
$\cos \frac{4\pi}{7}= - \cos \frac{3\pi}{7}$
$\cos \frac{2\pi}{7} = - \cos \frac{5\pi}{7}$
so $\cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7} = 1 - \cos \frac{2\pi}{7} - \cos \frac{4\pi}{7} - \cos \frac{6\pi}{7})$
so $2( cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7}) = 1$
or $2( cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7}) = \frac{1}{2}$
 
Hi greg1313! Your answer is great and thanks for participating!(Cool)

Hi kaliprasad, I admit that I didn't go through your whole solution and missed something obviously wrong. Sorry!

In this problem, I used the following identity for the proof:
$$\cos \dfrac{\pi}{7}-\cos \dfrac{2\pi}{7}+\cos \dfrac{3\pi}{7}=\frac{1}{2}.$$
 

Similar threads

Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K