Cosmological Scalar Field Density Dilution

Click For Summary
SUMMARY

The discussion focuses on the behavior of a homogeneous free scalar field ##\phi## with mass m and potential $$V(\phi) = \frac{1}{2}m^2\phi^2$$ in cosmology. It establishes that when the mass m is significantly larger than the Hubble parameter H (i.e., ##m ≫ H##), the scalar field oscillates with a frequency equal to m. Furthermore, it demonstrates that the energy density of the scalar field dilutes as ##a^{−3}##, derived from the equation $$\frac{\partial \rho}{\partial t} = -3H(P+\rho)$$ and the properties of the Klein-Gordon equation.

PREREQUISITES
  • Understanding of scalar fields in cosmology
  • Familiarity with the Klein-Gordon equation
  • Knowledge of Friedmann's equations
  • Basic concepts of energy density and pressure in cosmological contexts
NEXT STEPS
  • Study the Klein-Gordon equation in detail
  • Research the implications of Hubble friction in scalar field dynamics
  • Explore the derivation of energy density dilution in cosmological models
  • Examine the role of oscillatory behavior in scalar fields during inflation
USEFUL FOR

Students and researchers in theoretical physics, particularly those focusing on cosmology, scalar field theory, and the dynamics of inflationary models.

Samama Fahim
Messages
52
Reaction score
4
Consider a homogeneous free scalar field ##\phi## of mass m which has a
potential

$$V(\phi) = \frac{1}{2}m^2\phi^2$$

Show that, for ##m ≫ H##, the scalar field undergoes oscillations with
frequency given by $m$ and that its energy density dilutes as
##a^{−3}##.

This is from Modern Cosmology, Scott Dodelson, Chapter 6.

For the part "Show that its energy density dilutes as ##a^{−3}##", following is my attempt:

In the equation ##\frac{\partial \rho}{\partial t} = -3H(P+\rho)##, put ##P = \frac{1}{2} \dot{\phi}^2-V(\phi)## and ##\rho=\frac{1}{2} \dot{\phi}^2+V(\phi)## to get

$$\frac{\partial \rho}{\partial t} = -3\frac{\dot{a}}{a}\dot{\phi}^2,$$

where ##H = \dot{a}/a##. I am not sure how to proceed or proceed or whether this is the correct approach. Should I use Friedmann's equation instead? But it involves densities of other species as well, and there is no assumption here whether one species dominates. Or Should I convert ##d\rho/dt## to ##d \rho/ da##?

Kindly provide a hint as to how to proceed.
 
Last edited:
Space news on Phys.org
Sorry, going through my replies and must have missed this at the time...
The paper goes into some detail but you can proceed in a more simple way.

Recall from the Klein Gordon equation for the inflation,$$\ddot{\phi} + 3H\dot{\phi} + V' = 0$$The key assumption is to neglect the Hubble friction, ##3H\dot{\phi} \ll 1##, i.e. you have an underdamped oscillator when ##m## is large. We are given that the potential is quadratic (this would also apply for small oscillations around any quadratic minimum), so you have ##V' = m^2\phi## and the equation of motion ##\ddot{\phi} + m^2 \phi = 0## is just SHM with frequency ##m##. So write, for example,$$\phi = \phi_0 \cos{m t}$$For the next part, you have the right idea,$$\dot{\rho} = -3H(\rho + P) = -3H \dot{\phi}^2 $$Finally you just look at the time average. Note ##\langle \dot{\phi}^2 \rangle = \frac{1}{2} m^2 \phi_0^2 = \langle \rho \rangle##, so you just get$$d \ (\log \langle \rho \rangle) = -3 \ d (\log a)$$which then spits out the ##\rho \sim a^{-3}## dependence after inflation ends.
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 27 ·
Replies
27
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K