- #1
- 17
- 0
Could fusion be generated with very high voltage??
Using a Van De Graaff (VDG) machine, we can easily generate million-volt high voltage. The high potential difference can be generated effectively with minimum energy supplied to the machine. The larger the volume of the machine would be, the higher the voltage could get. However, stability would be a problem when the voltage gets to over 10 million-volts. This issue could be resolved with ‘magnified’ machine design. For example,
VDG1, VDG2, VDG3 ==> VDGA
VDG4, VDG5, VDG6 ==> VDGB
VDG7, VDG8, VDG9 ==> VDGC
…
VDGA, VDGB, VDGC ==> VDGX
In that case, VDGA works like a magnifier which aggregates the positive charge (or negative charge conducted from smaller VDGs) and collectively ‘magnifies’ the voltage to higher voltage. Of course, a portion of the positive charge could be lost in the process. However, it could theoretically be possible to keep majority of it until the voltage gets elevated to 100 million volts or higher. With such high voltage working on the deuterium or tritium, gas mixture which could be mixed from a source of gaseous catalyst, selected from the group consisting of beryllium, carbonates, hydroxides, halides, sulfates, phosphates, and sulfides. The reaction produces natural lightning, or occasional fusion reaction if you like.
Someone might argue natural lightning would not produce fusion. First of all, the design described here is not about real natural lightning. You don't get to manipulate real natural lightning with the addition of deuterium or tritium in the picture. Second, real natural lightning has voltage in the range of a few million to at most 10 million volts. You don't get as high voltage as the design theoretically could (if it works).
Surely, other fusion methods such as Inertial Confinement or Magnetic Confinement could produce fusion. For example, Inertial Confinement was limited to gaining 400 J per second with much less voltage (say, hundreds of thousands) and trying to get particles smashing onto each other to achieve sustaining fusion (while continuing to heating it up). In general, none of these experiments could produce higher output than input and sustaining fusion. In fact, the focus seems to be in ‘heating it up’. Natural lightning would no doubt produce higher energy than those methods because of the high electronic voltage to preserve its current, and no sustaining fusion is required to generate high energy output. It seems the wrong area of researches has dominated fusion methods of the past few decades.
Using a Van De Graaff (VDG) machine, we can easily generate million-volt high voltage. The high potential difference can be generated effectively with minimum energy supplied to the machine. The larger the volume of the machine would be, the higher the voltage could get. However, stability would be a problem when the voltage gets to over 10 million-volts. This issue could be resolved with ‘magnified’ machine design. For example,
VDG1, VDG2, VDG3 ==> VDGA
VDG4, VDG5, VDG6 ==> VDGB
VDG7, VDG8, VDG9 ==> VDGC
…
VDGA, VDGB, VDGC ==> VDGX
In that case, VDGA works like a magnifier which aggregates the positive charge (or negative charge conducted from smaller VDGs) and collectively ‘magnifies’ the voltage to higher voltage. Of course, a portion of the positive charge could be lost in the process. However, it could theoretically be possible to keep majority of it until the voltage gets elevated to 100 million volts or higher. With such high voltage working on the deuterium or tritium, gas mixture which could be mixed from a source of gaseous catalyst, selected from the group consisting of beryllium, carbonates, hydroxides, halides, sulfates, phosphates, and sulfides. The reaction produces natural lightning, or occasional fusion reaction if you like.
Someone might argue natural lightning would not produce fusion. First of all, the design described here is not about real natural lightning. You don't get to manipulate real natural lightning with the addition of deuterium or tritium in the picture. Second, real natural lightning has voltage in the range of a few million to at most 10 million volts. You don't get as high voltage as the design theoretically could (if it works).
Surely, other fusion methods such as Inertial Confinement or Magnetic Confinement could produce fusion. For example, Inertial Confinement was limited to gaining 400 J per second with much less voltage (say, hundreds of thousands) and trying to get particles smashing onto each other to achieve sustaining fusion (while continuing to heating it up). In general, none of these experiments could produce higher output than input and sustaining fusion. In fact, the focus seems to be in ‘heating it up’. Natural lightning would no doubt produce higher energy than those methods because of the high electronic voltage to preserve its current, and no sustaining fusion is required to generate high energy output. It seems the wrong area of researches has dominated fusion methods of the past few decades.