B Could Spontaneous symmetry breaking cause momentum change in an atom?

Matthew-Champion
Messages
7
Reaction score
2
TL;DR Summary
If you were to fire a single atom from a fixed point into a chamber of perfect vacuum and measure where it collides with the opposite wall. Could Spontaneous symmetry breaking in the sub atomic particles cause momentum change in the atom, changing the part of the wall the atom interacted with?
If you were to fire a single atom from a fixed point into a chamber of perfect vacuum and measure where it collides with the opposite wall. Could Spontaneous symmetry breaking in the sub atomic particles cause momentum change in the atom, changing the part of the wall the atom interacted with?
 
Physics news on Phys.org
No. Do you know what spontaneous symmetry breaking is?
 
From what I've read A brief summary of how I understand it is that spontaneous symmetry breaking is a process which allows small fluctuations on a sub atomic level to affect aspects of a larger system and when occurring in a spontaneous manner these fluctuations cannot change or distort the form of the system it is occurring in. I had wondered whether through some mechanism I have not heard about the inability of a spontaneous symmetry break to change the form of say an atom could be translated into a small change in momentum. You have answered my question thank you. If you know of no way than that's good enough for me.
 
Matthew-Champion said:
A brief summary of how I understand it is that spontaneous symmetry breaking is a process which allows small fluctuations on a sub atomic level to affect aspects of a larger system
No, that's not what spontaneous symmetry breaking is. It can occur even in macroscopic classical systems.

For example, consider a pencil balanced on its point. There is rotational symmetry in the underlying physical law governing the pencil: it is equally likely to fall over in any direction. However, once it does fall over, it will fall over in some specific direction. So the actual outcome of the physical law in this case is not rotationally symmetric--the pencil falls in one particular direction--even though the underlying physical law is. That is spontaneous symmetry breaking: particular solutions of a physical law do not have a symmetry that the law itself has.
 
Thank you for the clarification. in this example If the pencil is equally likely to fall in any direction is there an aspect of the underlying law I could assign the change in momentum of the pencil to?
an equal possibility of any outcome implies the pencil was stationary at the start of the experiment and then fell?
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top