Covariant derivative of metric tensor

  • Thread starter Damidami
  • Start date
94
0
Hi, I'm trying to verify that the covariant derivative of the metric tensor is D(g) = 0.
But I have a few questions:
1) This is a scalar 0 or a tensorial 0? Because it is suposed that the covariant derivative of a (m,n) tensor is a (m,n+1) tensor, and g is a (0,2) tensor so I think this 0 should be a (0,3) tensor. Am I right?

2) Following the MTW book in the example of page 341 we have:
[tex]\Gamma^{\theta}_{\phi\phi} = -sin(\theta)cos(\theta)[/tex]
[tex]\Gamma^{\phi}_{\phi\theta} = cos(\theta)/sin(\theta)[/tex]
and all the other [tex]\Gamma = 0[/tex]

But when I try to verify the covariant derivative of the metric tensor for the component [tex]g_{\phi\phi;\theta}[/tex] it doesn't give me 0, but instead:

[tex]g_{\phi\phi;\theta} = g_{\phi\phi,\theta} - \Gamma^{k}_{\theta\phi} g_{k\phi} - \Gamma^{k}_{\theta\phi} g_{\phi k} = 2a^2sin(\theta)cos(\theta) - (0+0) - (0+0) = 2a^2sin(\theta)cos(\theta) \neq 0 [/tex]

I checked it a lot of times and am not sure if this is a conceptual error or a procedure error.
Can someone clarify this to me?
 

cristo

Staff Emeritus
Science Advisor
8,056
72
Hi, I'm trying to verify that the covariant derivative of the metric tensor is D(g) = 0.
But I have a few questions:
1) This is a scalar 0 or a tensorial 0? Because it is suposed that the covariant derivative of a (m,n) tensor is a (m,n+1) tensor, and g is a (0,2) tensor so I think this 0 should be a (0,3) tensor. Am I right?
Yup, your reasoning is correct: it would be the type (0,3) tensor with every component zero.

2) Following the MTW book in the example of page 341 we have:
[tex]\Gamma^{\theta}_{\phi\phi} = -sin(\theta)cos(\theta)[/tex]
[tex]\Gamma^{\phi}_{\phi\theta} = cos(\theta)/sin(\theta)[/tex]
and all the other [tex]\Gamma = 0[/tex]

But when I try to verify the covariant derivative of the metric tensor for the component [tex]g_{\phi\phi;\theta}[/tex] it doesn't give me 0, but instead:

[tex]g_{\phi\phi;\theta} = g_{\phi\phi,\theta} - \Gamma^{k}_{\theta\phi} g_{k\phi} - \Gamma^{k}_{\theta\phi} g_{\phi k} = 2a^2sin(\theta)cos(\theta) - (0+0) - (0+0) = 2a^2sin(\theta)cos(\theta) \neq 0 [/tex]

I checked it a lot of times and am not sure if this is a conceptual error or a procedure error.
Can someone clarify this to me?
I don't know what the actual question is (since I don't have the book to hand) but I can't quite follow your last line. I get [tex]g_{\phi\phi;\theta}=g_{\phi\phi,\theta}-g_{k\phi}\Gamma^{k}_{\phi\theta} - g_{\phi k}\Gamma^{k}_{\phi\theta}= g_{\phi\phi,\theta}-2g_{\phi\phi}\Gamma^\phi_{\phi\theta}[/tex]

Is this what you get before plugging in the values?
 

kdv

336
1
Hi, I'm trying to verify that the covariant derivative of the metric tensor is D(g) = 0.
But I have a few questions:
1) This is a scalar 0 or a tensorial 0? Because it is suposed that the covariant derivative of a (m,n) tensor is a (m,n+1) tensor, and g is a (0,2) tensor so I think this 0 should be a (0,3) tensor. Am I right?

2) Following the MTW book in the example of page 341 we have:
[tex]\Gamma^{\theta}_{\phi\phi} = -sin(\theta)cos(\theta)[/tex]
[tex]\Gamma^{\phi}_{\phi\theta} = cos(\theta)/sin(\theta)[/tex]
and all the other [tex]\Gamma = 0[/tex]

But when I try to verify the covariant derivative of the metric tensor for the component [tex]g_{\phi\phi;\theta}[/tex] it doesn't give me 0, but instead:

[tex]g_{\phi\phi;\theta} = g_{\phi\phi,\theta} - \Gamma^{k}_{\theta\phi} g_{k\phi} - \Gamma^{k}_{\theta\phi} g_{\phi k} = 2a^2sin(\theta)cos(\theta) - (0+0) - (0+0) = 2a^2sin(\theta)cos(\theta) \neq 0 [/tex]

I checked it a lot of times and am not sure if this is a conceptual error or a procedure error.
Can someone clarify this to me?

I do get zero. Note that [tex] \Gamma^\phi_{\theta \phi} [/tex] is not zero, it is equal to
[tex] \Gamma^\phi_{\phi \theta} [/tex] !
 
94
0
Thanks a lot for your answers!!
Indeed that was the mistake, I forgot the symetry of the chistoffel symbols, it gives 0 now!
:)
 

Related Threads for: Covariant derivative of metric tensor

Replies
3
Views
3K
  • Posted
Replies
1
Views
865
  • Posted
Replies
11
Views
711
Replies
5
Views
1K
Replies
3
Views
1K
Replies
9
Views
7K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top