I The vanishing of the covariant derivative of the metric tensor

I read in another forum (unfortunately I no longer remember where) the following idea: An intuitive justification for having [itex] \nabla g=0 [/itex] is, if you move a meter stick around a room and the meter stick grows or shrinks as you move, it will still measure one meter in length if what you're using to measure it is the meter stick itself.
I think that is a very good intuitive of viewing it. ∇is measuring the gradient with respect to g. Therefore g has no gradient itself.
 

Orodruin

Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
15,616
5,636
I think that is a very good intuitive of viewing it. ∇is measuring the gradient with respect to g. Therefore g has no gradient itself.
There is no such thing as a ”gradient with respect to g”. The connection defines a way of relating vectors in nearby tangent spaces. This can be done in such a way that parallel transport preserves angles or not. If it does, this is what metric compatibility means. This does not mean that it is a gradient with respect to the metric. There is also no unique metric compatible connection unless further constraints (such as no torsion) are imposed.

I agree that preserving the inner product is a nice and intuitive property and in many cases there is good reason to restrict oneself to metric compatibility. However, there is a priori nothing wrong with having a connection that is not metric compatible - it just might not be what we are looking for for our description of whatever we want to describe.
 
There is no such thing as a ”gradient with respect to g”. The connection defines a way of relating vectors in nearby tangent spaces. This can be done in such a way that parallel transport preserves angles or not. If it does, this is what metric compatibility means. This does not mean that it is a gradient with respect to the metric. There is also no unique metric compatible connection unless further constraints (such as no torsion) are imposed.

I agree that preserving the inner product is a nice and intuitive property and in many cases there is good reason to restrict oneself to metric compatibility. However, there is a priori nothing wrong with having a connection that is not metric compatible - it just might not be what we are looking for for our description of whatever we want to describe.
But the question was framed in the context of General Relativity, where the connection is a metric connection (plus torsion). The covariant derivative of the metric along any curve vanishes. (The metric is always parallel(ly?) transported onto itself.) In that sense the metric has a vanishing derivative and is covariantly "flat".
 

Orodruin

Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
15,616
5,636
But the question was framed in the context of General Relativity, where the connection is a metric connection (plus torsion). The covariant derivative of the metric along any curve vanishes. (The metric is always parallel(ly?) transported onto itself.) In that sense the metric has a vanishing derivative and is covariantly "flat".
The question is posed in the differential geometry forum. The only actual implication of GR is the literature the OP is using. The terminology is that the metric is parallel (meaning that the covariant derivative everywhere in all directions is zero).

Flatness is a geometric property of the connection, not the metric or any other tensor. Even when the connection is metric compatible, the space may not be flat (otherwise we would not talk about curved spacetime in GR). Let us not mix up these concepts.

TLDR: If the connection is metric compatible, the metric is parallel. If the space is flat, any parallel transport around a contractable loop returns the original tensor.
 
I suspect the question should have been posed in the Special and General Relativity forum. :-)
 
Actually this thread has been very helpful to me. I'm especially interested in following up on the method outlined in the Einstein paper, where one arrives at Christoffel symbols via the geodesic approach. Would anyone like to recommend a good source? I've never taken a course in the calculus of variations.
 
Actually this thread has been very helpful to me. I'm especially interested in following up on the method outlined in the Einstein paper, where one arrives at Christoffel symbols via the geodesic approach. Would anyone like to recommend a good source? I've never taken a course in the calculus of variations.
You could try Sean Carroll's GR lecture notes.
Pages 66-67 (pdf version) has a good discussion of connections and metrics. It is not exactly what you're after, but it looks well explained and would be helpful.
PS I've come round to thinking that the best demonstration of ∇g=0 - in GR - is to note that it is trivially true in flat Minkowski space time, and there is always a locally Lorentzian frame in GR, so it has to hold everywhere in GR, as well.
 
Last edited:

Want to reply to this thread?

"The vanishing of the covariant derivative of the metric tensor" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top