unscientific
- 1,728
- 13
I was reading through hobson and my notes where the covariant acts on contravariant and covariant tensors as
\nabla_\alpha V^\mu = \partial_\alpha V^\mu + \Gamma^\mu_{\alpha \gamma} V^\gamma
\nabla_\alpha V_\mu = \partial_\alpha V_\mu - \Gamma^\gamma_{\alpha \mu} V_\gamma
Why is there a minus sign in the second equation?
I mean, if you simply multiply ##g_{\mu \gamma}## on both side of the equation:
\nabla_\alpha V^\mu g_{\mu \gamma} = \partial_\alpha V^\mu g_{\mu \gamma} + \Gamma^\mu_{\alpha \gamma} V^\gamma g_{\mu \gamma}
\nabla_\alpha V_{\gamma} = \partial_\alpha V_\gamma + \Gamma^\mu_{\alpha \gamma} V_\mu
Swapping ##\mu## and ##\gamma## we have
\nabla_\alpha V_{\mu} = \partial_\alpha V_\mu + \Gamma^\gamma_{\alpha \mu} V_\gamma
\nabla_\alpha V^\mu = \partial_\alpha V^\mu + \Gamma^\mu_{\alpha \gamma} V^\gamma
\nabla_\alpha V_\mu = \partial_\alpha V_\mu - \Gamma^\gamma_{\alpha \mu} V_\gamma
Why is there a minus sign in the second equation?
I mean, if you simply multiply ##g_{\mu \gamma}## on both side of the equation:
\nabla_\alpha V^\mu g_{\mu \gamma} = \partial_\alpha V^\mu g_{\mu \gamma} + \Gamma^\mu_{\alpha \gamma} V^\gamma g_{\mu \gamma}
\nabla_\alpha V_{\gamma} = \partial_\alpha V_\gamma + \Gamma^\mu_{\alpha \gamma} V_\mu
Swapping ##\mu## and ##\gamma## we have
\nabla_\alpha V_{\mu} = \partial_\alpha V_\mu + \Gamma^\gamma_{\alpha \mu} V_\gamma