MHB COVID-19 in a Small Town: Probability of Infection

AI Thread Summary
The discussion focuses on calculating the probabilities of COVID-19 infection among a random sample of six residents from a small town where 22% are infected. The probability that exactly two residents are infected is derived using the formula 15p^2(1-p)^4, with p set at 0.22. For the scenario of "at most one" infection, the probabilities for none and exactly one infected are combined, resulting in the formula (1-p)^6 + 6p(1-p)^5. The calculations illustrate how to apply binomial probability principles to determine infection likelihood in small populations. Understanding these probabilities can help in assessing risk in similar community settings.
laprec
Messages
18
Reaction score
0
Kindly assist with these questions:
Data showed that 22% of people in a small town was infected with the COVID-19 virus. A random sample of six residents from this town was selected.
1) What is the probability that exactly two of these residents was infected?
2) What is the probability that at most 1 of these residents was infected?
Thank you
 
Mathematics news on Phys.org
If the probability a given person has the virus is p then the probability that person does not have it is 1- p. First imagine putting the six people in a given order. The probability the first person has the virus is p, the probability the next person has the virus is p, the probability the third person does NOT have the virus is 1- p, the probability the fourth person does not is1-p, and the probability the fifth and sixth persons do not is 1-p.

The probability the first two people have the virus and the other four do not, in that order, is $p^2(1-p)^4$.

There are $\frac{6!}{2!4!}= \frac{6(5)}{2}= 15$ different orders of those two people who have the virus and four who do not so the probability two of a random six people have the diease and four do not is $15p^2(1- p)^4$.

In your problem, of course, p= 0.22.

"At most one" means "either one or none". By the same argument as above, the probability none of the people has the virus is $(1- p)^6$ and the probability exactly one has it is $6p(1-p)^5$. Since "none" and "exactly one" are "mutually exclusive", the probability of "at most one" is the sum of those.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top