Create a physics problem for me!

AI Thread Summary
A user requested a physics problem involving kinematics, dynamics, and calculus. The response highlighted that creating original problems isn't the forum's focus and suggested using resources like Irodov's problems or the math challenges available online. A specific classical mechanics problem was provided, which involves proving that an object falling from deep space takes 9/11 of the fall time to reach half the distance to Earth. The solution requires relating distance to time using Newton's law of gravitation. The thread concluded with the indication that it would remain closed as the inquiry had been adequately addressed.
silento
Messages
66
Reaction score
5
Homework Statement
Hello! Using concepts of physics 1 like kinamatics, dynamics, circular motion, pressure, newton's laws. Make me a physics question that needs basic calculus like integrals and derivaties to solve!
Relevant Equations
-
Hello! Using concepts of physics 1 like kinamatics, dynamics, circular motion, pressure, newton's laws. Make me a physics question that needs basic calculus like integrals and derivaties to solve!
 
Physics news on Phys.org
We are not in the business of making up problems. Do you know how to use the Internet?
 
  • Like
Likes MatinSAR and BvU
Irodov has lots of good problems!
 
  • Like
Likes MatinSAR, PhDeezNutz and silento
There’s a classical mechanics problem that is simple to state but can be hard depending on how you go about it. It has elements of Newton's gravitation, orbits, dynamics and kinamatics.

Prove that an object originating in deep space falling toward the earth will take 9/11 of the time of fall to travel half the distance.

It’s from the book Classical Dynamics by Marion in Chapter 5 problem 5-5 on page 205.

Basically you have to relate the distance to time but newtons gravitation law gives the acceleration based on distance.

One could do this problem numerically with python or some other programming language which would introduce you to computer modeling in a small domain.

One prof told us to use the Kepler equal areas in equal times law and consider the object is orbiting the earth in an elliptical orbit and just collapse the orbit ie minor axis goes to zero.
 
Since the thread has been answered as best as can be, it will remain closed.

Jedi
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top