twoflower
- 363
- 0
Let's say we know this:
<br /> \sqrt{n}\left(\widehat{\theta} - \theta\right) \sim \mathcal{N}\left(0, \frac{1}{F(\theta)}\right)<br />
How do we get from this information to this expression of confidence interval for \theta?
<br /> \left( \widehat{\theta} \pm u_{1-\frac{\alpha}{2}}\frac{1}{\sqrt{nF\left(\widehat{\theta}\right)}}\right)<br />
Where u_{1-\frac{\alpha}{2}} is appropriate quantil of standard normal distribution.
Thank you.
<br /> \sqrt{n}\left(\widehat{\theta} - \theta\right) \sim \mathcal{N}\left(0, \frac{1}{F(\theta)}\right)<br />
How do we get from this information to this expression of confidence interval for \theta?
<br /> \left( \widehat{\theta} \pm u_{1-\frac{\alpha}{2}}\frac{1}{\sqrt{nF\left(\widehat{\theta}\right)}}\right)<br />
Where u_{1-\frac{\alpha}{2}} is appropriate quantil of standard normal distribution.
Thank you.