Creating a simulator for an electromagnetic mass driver

  • Thread starter Thread starter Schwab
  • Start date Start date
  • Tags Tags
    Electromagetism
AI Thread Summary
A simulator is being developed to calculate the force on an iron rod within a coil, aiming to determine the optimal coil design for acceleration. The user seeks formulas for these calculations, noting they have the necessary parameters like rod size, weight, and coil specifications. While analytical formulas exist for forces inside the coil, they may not apply for external calculations, and a more realistic model could require complex software like COMSOL or Ansys. The discussion highlights the challenges of building a simulator without physical testing rigs and the potential steep learning curve of available software. Ultimately, the user is encouraged to explore existing tools to facilitate their simulation efforts.
Schwab
Messages
2
Reaction score
0
TL;DR Summary
Building simulator for mass driver and need to figure out how to calculate forces on an iron rod from an electromagnet.
I am trying to build a simulator for designing a mass driver. What I am essentially doing is given an iron rod and a coil of wire, calculate the force on the iron rod at various positions along the coil axis. Ideally, I want to use the various forces to calculate the final velocity of the rod. The overall goal is to compare different windings of an coils to find the one the best accelerates the iron rod. I can then feed that final velocity back into the simulator to test accelerating the rod while its already moving (for using multiple coils in a row). I might be way out of my depth here, but what would be the formulas for these calculations? As long as there is a semi accurate way to do this, even if it is really roundabout and intensive, I can write code to do most of the work for me. For givens, I have the size and weight of the iron rod, and the inner and outer diameter, number of windings and current through the coil.

I've seen a simulator like this done before, but the person used a testing rig to find the forces rather than calculating them, and I want to avoid having to build a similar testing device as I would have to build each coil that I want to test.
I am also new here, sorry in advance if I didn't include something important. I'll be checking here often if I need to post more information.
 

Attachments

  • Diagram.png
    Diagram.png
    5.5 KB · Views: 80
Engineering news on Phys.org
I think you will need to decide how realistic you want your model to be. There are analytical formulas for the force on an iron rod inside a coil. The numerical calculations are then not difficult.
However, this will always be an idealized case; if you want a more realistic model that takes into account multiple cells etc you will need something like a FEM solver, these are far from trivial to create from scratch and you would be better off using existing software such as COMSOL or Ansys.
It is very possible that there are free software libraries around that could be used;; but they tend to have a very steep learning curve. COMSOL is -relatively speaking- easy to us (which does not mean easy)

if you
 
Thanks for the reply! I'll have to look into that software to see if it will do what I need it to. I'd like to use the analytical formulas, but since I'm trying to find force outside of the coil, I doubt they would work.
 
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top