Creating Schrödinger cat states with trapped ions

Marioweee
Messages
18
Reaction score
5
Homework Statement
We will consider that the ion is in an harmonic trap. The ion has two internal states |g⟩ and |s⟩ and it interacts with a laser that induces a state-dependent force. The quantum dynamics is governed by the Hamiltonian

$$H = H_R + H_f$$
$$H_R = Ω(|s><g| + |g><s|)$$
$$H_f = g(|s><s| − |g><g|)(a^\dagger + a)$$

HR induces Rabi oscillations between internal states. Hf describes an optical force that depends on the state of the
ion. Note that the operator $(a^\dagger + a)$ is proportional to the position of the ion. The force’s sign depends on the internal state of the ion, such that

$$|s⟩ → Hf = g(a^\dagger + a)$$
$$|g⟩ → Hf = −g(a^\dagger + a)$$

1. Imagine the ion is initially in the ground state
|ψ1⟩ = |g⟩|0⟩, where |g⟩ is the electronic ground state and |0⟩ is the ground state of the vibrational degrees of freedom (zero phonons). We consider that there is no applied force and the Rabi term HR acts for a time $t=\frac{\pi}{4\Omega}$ . After that, the state of the ion is
|ψ2⟩ = (a|g⟩ + b|s⟩)|0⟩ Calculate a and b.

2. Now we turn off the Rabi term (Ω = 0) and let the state-dependent force act for a time τ .Show that the state of the ion is
|ψ2⟩ = a|g⟩|α⟩ + b|s⟩| − α⟩
and calculate the value of α.
Relevant Equations
-
I have already solved question number 1 by applying the schrödinger equation obtaining that

$$\ket{\psi_2}(t) = \cos(\Omega t)\ket{g} - i \sin (\Omega t)\ket{s}$$

and therefore in ##t=\frac{\pi}{4\Omega}##

$$\ket{\psi_2}(t) = \dfrac{1}{\sqrt{2}}(\ket{g} - i \ket{s})$$

I have some doubts about the second exercise. What I have tried is the following

$$|ψ(t)⟩ = e^{-iH_f t}\dfrac{1}{\sqrt(2)}(|g⟩ -i |s⟩)\ket{0} = \dfrac{1}{\sqrt(2)}(e^{it}|g⟩ -i e^{-it} |s⟩)\otimes e^{-igt(a^\dagger + a)}\ket{0}$$

I think that

$$e^{-ig(a^\dagger + a)}\ket{0}$$

should be something proportional to ##\ket{\alpha} = \ket{-igt}## (because of the displacement operator). But the displacement operator proportional to ##a^\dagger - a## so im a bit confused. Moreover, the ##e^{it}## and ##e^{-it}## terms make me think something is wrong.
 
Last edited by a moderator:
Physics news on Phys.org
Marioweee said:
I think that

$$e^{-ig(a^\dagger + a)}\ket{0}$$

should be something proportional to ##\ket{\alpha} = \ket{-igt}## (because of the displacement operator).
It is a harmonic oscillator, so ##a## and ##a^\dagger## are ladder operators.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top