Criterion for a positive integer a>1 to be a square

Click For Summary
A positive integer a greater than 1 is a square if and only if all the exponents in its prime factorization are even integers. This is derived from the fact that if a = b^2 for some integer b, then b can be expressed in terms of its prime factors, leading to even exponents in the canonical form of a. Conversely, if all prime exponents of a are even, then a can be expressed as the square of another integer. A clarification was made regarding the requirement that b must be greater than 1 when stating a = b^2. Thus, the condition for a to be a square is clearly established.
Math100
Messages
816
Reaction score
229
Homework Statement
Prove that a positive integer ## a>1 ## is a square if and only if in the canonical form of ## a ## all the exponents of the primes are even integers.
Relevant Equations
None.
Proof:

Suppose a positive integer ## a>1 ## is a square.
Then we have ## a=b^2 ## for some ## b\in\mathbb{Z} ##,
where ## b=p_{1}^{n_{1}} p_{2}^{n_{2}} \dotsb p_{r}^{n_{r}} ##
such that each ## n_{i} ## is a positive integer and ## p_{i}'s ##
are prime for ## i=1,2,3,...,r ## with ## p_{1}<p_{2}<p_{3}< \dotsb <p_{r} ##.
Thus ## a=b^2 ##
## =(p_{1}^{n_{1}} p_{2}^{n_{2}} \dotsb p_{r}^{n_{r}})^2 ##
## =p_{1}^{2n_{1}} p_{2}^{2n_{2}} \dotsb p_{r}^{2n_{r}} ##,
which shows that all the exponents of the primes are even integers in the canonical form of ## a ##.
Conversely, suppose all the exponents of the primes are even integers in the canonical form of
## a=p_{1}^{n_{1}} p_{2}^{n_{2}} \dotsb p_{r}^{n_{r}} ##.
Then we have ## n_{i}=2k_{i} ## for some ## n_{i}, k_{i} \in\mathbb{Z} ##.
Thus ## a=p_{1}^{2k_{1}} p_{2}^{2k_{2}} \dotsb p_{r}^{2k_{r}} ##
## =(p_{1}^{k_{1}} p_{2}^{k_{2}} \dotsb p_{r}^{k_{r}})^2 ##,
which shows that a positive integer ## a>1 ## is a square.
Therefore, a positive integer ## a>1 ## is a square if and only if in the canonical form of ## a ##
all the exponents of the primes are even integers.
 
Physics news on Phys.org
That's correct.
 
There's a tiny flaw. You say ##a = b^2## for some ##b \in \mathbb Z##. But, you need ##b >1##.
 
PeroK said:
There's a tiny flaw. You say ##a = b^2## for some ##b \in \mathbb Z##. But, you need ##b >1##.
How about if I write ## a=b^2 ## for some ## b\in\mathbb{Z} ## where ## b>1 ##?
 
Math100 said:
How about if I write ## a=b^2 ## for some ## b\in\mathbb{Z} ## where ## b>1 ##?
Yes.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...