Consider the equation dy/dt = alpha - y^2(adsbygoogle = window.adsbygoogle || []).push({});

a) Find all of the critical points. How does it change as alpha < 0, alpha = 0 or alpha > 0?

b) In each case of different alphas, consider the graph of f(y) vs y and determine whether each critical point is asympototically stable, semistable, or unstable.

c) For alpha > 0, find the solution.

d) Plot a bifurcation diagram - this is a plot of the location of the critical points as a function of alpha (plot a graph alpha as x axis and y axis showing the location of the critical point)

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Critical Points and Graphs of Differential Equations

**Physics Forums | Science Articles, Homework Help, Discussion**